organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,9′-Di­bromo-9,9′-bifluorene

aInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp

(Received 22 January 2008; accepted 26 January 2008; online 6 February 2008)

9,9′-Dibromo-9,9′-bifluorene, C26H16Br2, has a gauche conformation about the connecting C—C bond [the Br—C—C—Br torsion angle is 59.39 (16)°]. The crystal structure is sustained mainly by an inter­molecular C—Br⋯π inter­action [3.299 (2) and 3.369 (2) Å] towards the bifluorene aromatic-ring-connecting C—C bond and a weak C—H⋯π inter­action (2.86 and 2.99 Å) between the two aromatic rings.

Related literature

For related literature, see: Dougherty et al. (1978[Dougherty, D. A., Llort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1301-1306.]); Graebe & Manz (1896[Graebe, C. & Manz, B. (1896). Liebigs Ann. 290, 238-246.]); Olah et al. (1981[Olah, G. A., Field, L. D., Watkins, M. I. & Malhotra, R. (1981). J. Org. Chem. 46, 1761-1764.]); Solans et al. (1980[Solans, X., Miravitlles, C., Declercq, J. P. & Germain, G. (1980). Acta Cryst. B36, 2677-2683.]); Sridevi et al. (2006[Sridevi, V. S., Leong, W. K. & Zhu, Y. (2006). Organometallics, 25, 283-288.]).

[Scheme 1]

Experimental

Crystal data
  • C26H16Br2

  • Mr = 488.21

  • Monoclinic, P 21 /n

  • a = 12.7083 (3) Å

  • b = 12.0480 (2) Å

  • c = 12.7786 (2) Å

  • β = 102.5340 (8)°

  • V = 1909.90 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 103 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQUAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.351, Tmax = 0.655

  • 12332 measured reflections

  • 3339 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.12

  • 3339 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected interatomic distances (Å)

Br2⋯C11i 3.299 (2)
Br2⋯C12i 3.369 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H15⋯C2ii 0.95 2.99 3.760 (3) 140
C20—H15⋯C3ii 0.95 2.86 3.493 (3) 125
Symmetry code: (ii) -x+2, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Version 1.3.5 SP2. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Version 1.4.2; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: yadokari-XG (Wakita, 2005[Wakita, K. (2005). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.html ]).

Supporting information


Comment top

Although a number of synthetic works and structural analyses on 9,9'-bifluorene derivertives have been reported, only one report is known for the crystalline structure of 9-halo-9,9'-bifluorene derivertive, that is, 1,1',2,2',3,3',4,4',5,5',6,6',7,7',8,8',9-heptadecachloro- 9,9'-bifluorene (Solans et al., 1980). We have succeeded in the first structural analysis of 9,9'-dihalo-9,9'-bifluorene derivertive, 9,9'-dibromo-9,9'-bifluorene.

The first report on the synthesis of 9,9'-dibromo-9,9'-bifluorene appaered in the 19t h century (Graebe et al., 1896). Its gauche groud-state conformation was revealed by its NMR spectra and the theoretical calculations (Olah et al., 1981).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of Br1—C9—C22—Br2 is 59.39 (16)°, indicating its gauche conformation. Although the bond length of C9—C22 [1.561 (3) Å] is longer than that of non-substituted 9,9'-bifluorene [1.542 (3) Å, Dougherty et al., 1978; 1.539 (3) Å, Sridevi et al., 2006], it is one of the shortest C—C bonds between 9 and 9' positions among the 9(,9')-substituted 9,9'-bifluorenes (1.559–1.724 Å). The shortest intermolecular contacts were found to be C22—Br2···C11i [3.299 (2) Å], C22—Br2···C12i [3.369 (2) Å], and C20—H15···C3ii (2.86 Å) (Fig. 2) [symmetry codes: (i) 3/2 - x, -1/2 + y, 1/2 - z, (ii) 2 - x, -y, 1 - z].

Related literature top

For related literature, see: Dougherty et al. (1978); Graebe & Manz (1896); Olah et al. (1981); Solans et al. (1980); Sridevi et al. (2006).

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.4.2; Macrae et al., 2006); software used to prepare material for publication: yadokari-XG (Wakita, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Dashed lines indicate the intermolecular contacts [symmetry codes: (i) 3/2 - x, -1/2 + y, 1/2 - z, (ii) 2 - x, -y, 1 - z].
9,9'-Dibromo-9,9'-bifluorene top
Crystal data top
C26H16Br2Z = 4
Mr = 488.21F(000) = 968
Monoclinic, P21/nDx = 1.698 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 12.7083 (3) Åθ = 3.1–25.0°
b = 12.0480 (2) ŵ = 4.25 mm1
c = 12.7786 (2) ÅT = 103 K
β = 102.5340 (8)°Prism, colorless
V = 1909.90 (6) Å30.30 × 0.10 × 0.10 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(REQUAB; Jacobson, 1998)
h = 1511
Tmin = 0.351, Tmax = 0.655k = 1414
12332 measured reflectionsl = 1115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.8804P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3339 reflectionsΔρmax = 0.48 e Å3
254 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0188 (9)
Crystal data top
C26H16Br2V = 1909.90 (6) Å3
Mr = 488.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7083 (3) ŵ = 4.25 mm1
b = 12.0480 (2) ÅT = 103 K
c = 12.7786 (2) Å0.30 × 0.10 × 0.10 mm
β = 102.5340 (8)°
Data collection top
Rigaku Mercury CCD
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(REQUAB; Jacobson, 1998)
3242 reflections with I > 2σ(I)
Tmin = 0.351, Tmax = 0.655Rint = 0.039
12332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.12Δρmax = 0.48 e Å3
3339 reflectionsΔρmin = 0.97 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84656 (18)0.16573 (18)0.23137 (17)0.0212 (4)
H10.79920.12710.17550.025*
C20.95781 (19)0.15777 (19)0.24391 (19)0.0253 (5)
H20.98670.11290.19590.030*
C31.02751 (18)0.21444 (19)0.3257 (2)0.0261 (5)
H31.10320.20670.33320.031*
C40.98803 (18)0.28206 (18)0.39616 (18)0.0227 (5)
H41.03560.32130.45140.027*
C50.84633 (19)0.43653 (19)0.52326 (17)0.0241 (5)
H50.92060.44590.55510.029*
C60.7676 (2)0.4993 (2)0.55742 (18)0.0270 (5)
H60.78850.55240.61300.032*
C70.6587 (2)0.48479 (18)0.51094 (18)0.0254 (5)
H70.60630.52890.53450.031*
C80.62552 (18)0.40646 (17)0.43032 (17)0.0214 (4)
H80.55120.39610.39930.026*
C90.69082 (16)0.25349 (16)0.31151 (16)0.0165 (4)
C100.80673 (17)0.23199 (16)0.30326 (16)0.0174 (4)
C110.87685 (17)0.29089 (17)0.38378 (17)0.0195 (4)
C120.81287 (17)0.36011 (17)0.44157 (16)0.0189 (4)
C130.70351 (18)0.34400 (17)0.39632 (16)0.0180 (4)
C140.42727 (17)0.20938 (17)0.30227 (18)0.0196 (4)
H90.42460.22160.22830.024*
C150.33643 (18)0.22638 (17)0.34502 (19)0.0223 (5)
H100.27150.25150.29950.027*
C160.33917 (18)0.20728 (18)0.45294 (19)0.0237 (5)
H110.27650.22040.48040.028*
C170.43250 (19)0.16928 (17)0.52080 (18)0.0212 (4)
H120.43400.15460.59420.025*
C180.67213 (19)0.07827 (17)0.63627 (17)0.0224 (5)
H130.62860.08080.68800.027*
C190.7776 (2)0.04043 (17)0.66387 (19)0.0241 (5)
H140.80700.01840.73560.029*
C200.84104 (19)0.03434 (17)0.58756 (18)0.0223 (5)
H150.91310.00810.60800.027*
C210.79998 (17)0.06636 (17)0.48168 (17)0.0195 (4)
H160.84240.06030.42920.023*
C220.63207 (16)0.15126 (16)0.34754 (15)0.0161 (4)
C230.52149 (17)0.17426 (16)0.37060 (16)0.0167 (4)
C240.52399 (17)0.15302 (16)0.47932 (16)0.0178 (4)
C250.63132 (17)0.11255 (16)0.53100 (16)0.0182 (4)
C260.69575 (17)0.10723 (16)0.45519 (16)0.0169 (4)
Br10.611538 (16)0.312530 (17)0.171820 (15)0.02031 (11)
Br20.616445 (16)0.029301 (16)0.241602 (16)0.02030 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0244 (11)0.0232 (10)0.0175 (10)0.0005 (8)0.0074 (9)0.0037 (9)
C20.0270 (12)0.0252 (11)0.0271 (12)0.0070 (9)0.0131 (10)0.0082 (10)
C30.0188 (11)0.0271 (11)0.0334 (13)0.0031 (9)0.0082 (10)0.0119 (10)
C40.0196 (11)0.0224 (10)0.0242 (11)0.0016 (8)0.0003 (9)0.0085 (9)
C50.0277 (12)0.0251 (11)0.0170 (11)0.0068 (9)0.0005 (9)0.0024 (9)
C60.0407 (14)0.0228 (11)0.0182 (11)0.0077 (10)0.0080 (10)0.0052 (9)
C70.0356 (13)0.0215 (11)0.0217 (11)0.0012 (9)0.0117 (10)0.0037 (9)
C80.0253 (11)0.0184 (10)0.0214 (11)0.0017 (8)0.0068 (9)0.0005 (8)
C90.0195 (10)0.0178 (9)0.0114 (9)0.0013 (8)0.0021 (8)0.0004 (8)
C100.0195 (10)0.0175 (10)0.0153 (10)0.0016 (8)0.0044 (8)0.0056 (8)
C110.0222 (11)0.0183 (10)0.0177 (10)0.0001 (8)0.0040 (9)0.0081 (8)
C120.0245 (11)0.0178 (10)0.0143 (10)0.0026 (8)0.0037 (8)0.0043 (8)
C130.0249 (11)0.0157 (9)0.0135 (10)0.0019 (8)0.0046 (8)0.0023 (8)
C140.0215 (11)0.0179 (10)0.0198 (11)0.0017 (8)0.0051 (9)0.0000 (8)
C150.0192 (11)0.0194 (10)0.0275 (12)0.0002 (8)0.0034 (9)0.0002 (9)
C160.0236 (11)0.0199 (10)0.0303 (12)0.0014 (8)0.0116 (10)0.0023 (9)
C170.0288 (12)0.0175 (10)0.0190 (11)0.0024 (8)0.0088 (9)0.0018 (8)
C180.0330 (12)0.0196 (10)0.0146 (10)0.0012 (9)0.0049 (9)0.0005 (8)
C190.0323 (13)0.0210 (10)0.0162 (11)0.0012 (9)0.0008 (9)0.0021 (8)
C200.0240 (12)0.0174 (10)0.0221 (11)0.0009 (8)0.0021 (9)0.0031 (8)
C210.0225 (11)0.0153 (10)0.0203 (11)0.0006 (8)0.0035 (8)0.0007 (8)
C220.0205 (11)0.0154 (9)0.0118 (9)0.0003 (8)0.0023 (8)0.0037 (8)
C230.0196 (11)0.0143 (9)0.0164 (10)0.0027 (7)0.0044 (8)0.0031 (8)
C240.0231 (11)0.0136 (9)0.0167 (10)0.0027 (8)0.0044 (8)0.0032 (8)
C250.0249 (11)0.0125 (9)0.0167 (10)0.0021 (8)0.0035 (9)0.0021 (8)
C260.0229 (10)0.0132 (9)0.0141 (10)0.0021 (8)0.0026 (8)0.0007 (7)
Br10.02204 (15)0.02365 (15)0.01439 (15)0.00219 (7)0.00212 (9)0.00367 (7)
Br20.02386 (16)0.01924 (15)0.01694 (14)0.00053 (7)0.00257 (9)0.00527 (7)
Geometric parameters (Å, º) top
C1—C21.391 (3)C14—C231.386 (3)
C1—C101.393 (3)C14—C151.395 (3)
C1—H10.9500C14—H90.9500
C2—C31.393 (4)C15—C161.391 (3)
C2—H20.9500C15—H100.9500
C3—C41.387 (3)C16—C171.386 (3)
C3—H30.9500C16—H110.9500
C4—C111.391 (3)C17—C241.392 (3)
C4—H40.9500C17—H120.9500
C5—C121.388 (3)C18—C191.387 (3)
C5—C61.398 (4)C18—C251.395 (3)
C5—H50.9500C18—H130.9500
C6—C71.394 (4)C19—C201.395 (3)
C6—H60.9500C19—H140.9500
C7—C81.393 (3)C20—C211.395 (3)
C7—H70.9500C20—H150.9500
C8—C131.387 (3)C21—C261.385 (3)
C8—H80.9500C21—H160.9500
C9—C131.521 (3)C22—C231.523 (3)
C9—C101.522 (3)C22—C261.531 (3)
C9—C221.561 (3)C22—Br21.9785 (19)
C9—Br11.982 (2)C23—C241.406 (3)
C10—C111.399 (3)C24—C251.464 (3)
C11—C121.470 (3)C25—C261.399 (3)
C12—C131.398 (3)
Br2···C11i3.299 (2)Br2···C12i3.369 (2)
C2—C1—C10118.0 (2)C23—C14—C15118.2 (2)
C2—C1—H1121.0C23—C14—H9120.9
C10—C1—H1121.0C15—C14—H9120.9
C1—C2—C3121.2 (2)C16—C15—C14121.3 (2)
C1—C2—H2119.4C16—C15—H10119.4
C3—C2—H2119.4C14—C15—H10119.4
C4—C3—C2120.9 (2)C17—C16—C15120.6 (2)
C4—C3—H3119.5C17—C16—H11119.7
C2—C3—H3119.5C15—C16—H11119.7
C3—C4—C11118.2 (2)C16—C17—C24118.7 (2)
C3—C4—H4120.9C16—C17—H12120.7
C11—C4—H4120.9C24—C17—H12120.7
C12—C5—C6118.1 (2)C19—C18—C25118.6 (2)
C12—C5—H5121.0C19—C18—H13120.7
C6—C5—H5121.0C25—C18—H13120.7
C7—C6—C5120.8 (2)C18—C19—C20120.8 (2)
C7—C6—H6119.6C18—C19—H14119.6
C5—C6—H6119.6C20—C19—H14119.6
C8—C7—C6120.9 (2)C21—C20—C19120.8 (2)
C8—C7—H7119.6C21—C20—H15119.6
C6—C7—H7119.6C19—C20—H15119.6
C13—C8—C7118.5 (2)C26—C21—C20118.2 (2)
C13—C8—H8120.8C26—C21—H16120.9
C7—C8—H8120.8C20—C21—H16120.9
C13—C9—C10102.52 (16)C23—C22—C26102.66 (16)
C13—C9—C22109.82 (16)C23—C22—C9115.74 (16)
C10—C9—C22114.74 (16)C26—C22—C9110.18 (16)
C13—C9—Br1109.82 (13)C23—C22—Br2107.92 (13)
C10—C9—Br1108.01 (13)C26—C22—Br2108.20 (13)
C22—C9—Br1111.52 (13)C9—C22—Br2111.57 (13)
C1—C10—C11120.7 (2)C14—C23—C24120.61 (19)
C1—C10—C9129.73 (19)C14—C23—C22129.87 (19)
C11—C10—C9109.53 (18)C24—C23—C22109.52 (18)
C4—C11—C10120.9 (2)C17—C24—C23120.6 (2)
C4—C11—C12130.1 (2)C17—C24—C25130.42 (19)
C10—C11—C12108.88 (18)C23—C24—C25108.98 (18)
C5—C12—C13121.2 (2)C18—C25—C26120.2 (2)
C5—C12—C11129.9 (2)C18—C25—C24130.43 (19)
C13—C12—C11108.78 (18)C26—C25—C24109.33 (18)
C8—C13—C12120.6 (2)C21—C26—C25121.31 (19)
C8—C13—C9129.8 (2)C21—C26—C22129.33 (18)
C12—C13—C9109.65 (18)C25—C26—C22109.36 (17)
C10—C1—C2—C30.1 (3)C19—C20—C21—C261.8 (3)
C1—C2—C3—C41.0 (3)C13—C9—C22—C2357.5 (2)
C2—C3—C4—C110.7 (3)C10—C9—C22—C23172.27 (17)
C12—C5—C6—C70.3 (3)Br1—C9—C22—C2364.52 (19)
C5—C6—C7—C80.9 (3)C13—C9—C22—C2658.4 (2)
C6—C7—C8—C130.8 (3)C10—C9—C22—C2656.4 (2)
C2—C1—C10—C111.6 (3)Br1—C9—C22—C26179.60 (13)
C2—C1—C10—C9177.91 (19)C13—C9—C22—Br2178.64 (13)
C13—C9—C10—C1172.8 (2)C10—C9—C22—Br263.81 (19)
C22—C9—C10—C168.2 (3)Br1—C9—C22—Br259.39 (16)
Br1—C9—C10—C156.9 (2)C15—C14—C23—C242.0 (3)
C13—C9—C10—C117.6 (2)C15—C14—C23—C22178.76 (19)
C22—C9—C10—C11111.41 (19)C26—C22—C23—C14175.8 (2)
Br1—C9—C10—C11123.53 (15)C9—C22—C23—C1464.1 (3)
C3—C4—C11—C100.8 (3)Br2—C22—C23—C1461.7 (2)
C3—C4—C11—C12176.1 (2)C26—C22—C23—C243.5 (2)
C1—C10—C11—C42.0 (3)C9—C22—C23—C24116.61 (19)
C9—C10—C11—C4177.61 (18)Br2—C22—C23—C24117.60 (15)
C1—C10—C11—C12175.47 (18)C16—C17—C24—C230.3 (3)
C9—C10—C11—C124.9 (2)C16—C17—C24—C25178.9 (2)
C6—C5—C12—C131.6 (3)C14—C23—C24—C171.4 (3)
C6—C5—C12—C11174.0 (2)C22—C23—C24—C17179.19 (18)
C4—C11—C12—C51.0 (4)C14—C23—C24—C25177.42 (17)
C10—C11—C12—C5176.2 (2)C22—C23—C24—C251.9 (2)
C4—C11—C12—C13177.0 (2)C19—C18—C25—C260.8 (3)
C10—C11—C12—C130.2 (2)C19—C18—C25—C24178.3 (2)
C7—C8—C13—C120.5 (3)C17—C24—C25—C180.4 (4)
C7—C8—C13—C9179.6 (2)C23—C24—C25—C18178.3 (2)
C5—C12—C13—C81.7 (3)C17—C24—C25—C26178.1 (2)
C11—C12—C13—C8174.74 (18)C23—C24—C25—C260.6 (2)
C5—C12—C13—C9178.35 (18)C20—C21—C26—C252.5 (3)
C11—C12—C13—C95.2 (2)C20—C21—C26—C22177.94 (19)
C10—C9—C13—C8172.2 (2)C18—C25—C26—C211.2 (3)
C22—C9—C13—C865.4 (3)C24—C25—C26—C21176.82 (18)
Br1—C9—C13—C857.6 (3)C18—C25—C26—C22179.13 (17)
C10—C9—C13—C127.7 (2)C24—C25—C26—C222.9 (2)
C22—C9—C13—C12114.67 (19)C23—C22—C26—C21175.8 (2)
Br1—C9—C13—C12122.35 (15)C9—C22—C26—C2160.3 (3)
C23—C14—C15—C160.9 (3)Br2—C22—C26—C2161.9 (2)
C14—C15—C16—C170.8 (3)C23—C22—C26—C253.8 (2)
C15—C16—C17—C241.4 (3)C9—C22—C26—C25120.03 (18)
C25—C18—C19—C201.4 (3)Br2—C22—C26—C25117.75 (15)
C18—C19—C20—C210.1 (3)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H15···C2ii0.952.993.760 (3)140
C20—H15···C3ii0.952.863.493 (3)125
Symmetry code: (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H16Br2
Mr488.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)12.7083 (3), 12.0480 (2), 12.7786 (2)
β (°) 102.5340 (8)
V3)1909.90 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.25
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQUAB; Jacobson, 1998)
Tmin, Tmax0.351, 0.655
No. of measured, independent and
observed [I > 2σ(I)] reflections
12332, 3339, 3242
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.12
No. of reflections3339
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.97

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.4.2; Macrae et al., 2006), yadokari-XG (Wakita, 2005).

Selected interatomic distances (Å) top
Br2···C11i3.299 (2)Br2···C12i3.369 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H15···C2ii0.952.993.760 (3)139.56
C20—H15···C3ii0.952.863.493 (3)124.73
Symmetry code: (ii) x+2, y, z+1.
 

Acknowledgements

This work was partially supported by Grants-in-Aid for Creative Scientific Research (No. 17GS0207), the 21st Century COE Program B14 (Kyoto University Alliance for Chemistry), and the Global COE Program B09 (International Center for Integrated Research and Advanced Education in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDougherty, D. A., Llort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1301–1306.  CAS Google Scholar
First citationGraebe, C. & Manz, B. (1896). Liebigs Ann. 290, 238–246.  CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlah, G. A., Field, L. D., Watkins, M. I. & Malhotra, R. (1981). J. Org. Chem. 46, 1761–1764.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2004). CrystalClear. Version 1.3.5 SP2. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolans, X., Miravitlles, C., Declercq, J. P. & Germain, G. (1980). Acta Cryst. B36, 2677–2683.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSridevi, V. S., Leong, W. K. & Zhu, Y. (2006). Organometallics, 25, 283–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationWakita, K. (2005). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.html  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds