organic compounds
1,5-Bis(2-formylphenoxy)-3-oxapentane
aInstituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: ronconi@iq.ufrj.br
In the title molecule, C18H18O5, the two aromatic rings are connected by a flexible 3-oxapentane chain. The molecule has a crystallographic twofold rotation axis (C2) passing through the central O atom. An intramolecular C—H⋯O hydrogen bond is observed in the solid state.
Related literature
For related literature, see: Biernat et al. (1992); Qi et al. (2005); Jeffrey & Saenger (1991); Spek (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell PHICHI (Duisenberg et al., 2000); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808002948/si2065sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808002948/si2065Isup2.hkl
A mixture of 2[2-(2-p-tolylsulfonyloxy)ethoxy]ethanol (1 g, 8.19 mmol), salicylic aldehyde (0.87 g, 2.10 mmol), and K2CO3 (0.47 g, 3.40 mmol) in dry MeCN (20 ml) was heated for 12 h under reflux. After the reaction mixture had cooled down to room temperature, it was filtered and the solvent removed under vacuum. The residue was purified by
(SiO2, Hexane:EtOAc 1:1) to give the desired product (0.55 g, 83%) as a yellow solid. A single-crystal was isolated after slow evaporation of the crystallization solvent (THF).All hydrogen atoms were geometrically constrained using a riding model, with C—H distances of 0.93 Å for both benzene rings and the aldehyde moieties with Uiso(H) = 1.2Ueq(Csp2), and with C—H distances of 0.97 Å for the ethyl C atoms with Uiso(H) = 1.2Ueq(Csp3).
Data collection: COLLECT (Nonius, 1998); cell
PHICHI (Duisenberg et al., 2000); data reduction: EVAL14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C18H18O5 | F(000) = 1328 |
Mr = 314.32 | Dx = 1.292 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 50 reflections |
a = 27.613 (6) Å | θ = 1–27.5° |
b = 26.404 (5) Å | µ = 0.09 mm−1 |
c = 4.4313 (9) Å | T = 295 K |
V = 3230.8 (11) Å3 | Plate, yellow |
Z = 8 | 0.25 × 0.08 × 0.05 mm |
Nonius KappaCCD diffractometer | 480 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.134 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
ϕ and ω scans with κ offsets | h = −34→35 |
4449 measured reflections | k = −34→34 |
1043 independent reflections | l = −5→5 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0377P)2] where P = (Fo2 + 2Fc2)/3 |
1043 reflections | (Δ/σ)max < 0.001 |
105 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C18H18O5 | V = 3230.8 (11) Å3 |
Mr = 314.32 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 27.613 (6) Å | µ = 0.09 mm−1 |
b = 26.404 (5) Å | T = 295 K |
c = 4.4313 (9) Å | 0.25 × 0.08 × 0.05 mm |
Nonius KappaCCD diffractometer | 480 reflections with I > 2σ(I) |
4449 measured reflections | Rint = 0.134 |
1043 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.12 e Å−3 |
1043 reflections | Δρmin = −0.14 e Å−3 |
105 parameters |
Experimental. The transformation of the unit cell axes and hkl intensity data were performed by using the matrix (00–1, 010, 100) in order to solve and refine the structure in the standard setting for space group Fdd2. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.03242 (14) | 0.47183 (13) | 1.1699 (9) | 0.0683 (12) | |
H1A | 0.0138 | 0.4508 | 1.3069 | 0.082* | |
H1B | 0.0515 | 0.4951 | 1.2902 | 0.082* | |
C2 | 0.06560 (13) | 0.43903 (12) | 0.9883 (9) | 0.0607 (10) | |
H2A | 0.0831 | 0.4162 | 1.1207 | 0.073* | |
H2B | 0.0469 | 0.4188 | 0.8472 | 0.073* | |
C3 | 0.13695 (13) | 0.44746 (12) | 0.6829 (8) | 0.0495 (9) | |
C4 | 0.14652 (13) | 0.39549 (12) | 0.6935 (9) | 0.0622 (11) | |
H4 | 0.1263 | 0.3740 | 0.8015 | 0.075* | |
C5 | 0.18651 (15) | 0.37623 (15) | 0.5414 (11) | 0.0773 (13) | |
H5 | 0.1930 | 0.3417 | 0.5519 | 0.093* | |
C6 | 0.21687 (15) | 0.40706 (15) | 0.3753 (10) | 0.0731 (13) | |
H6 | 0.2433 | 0.3935 | 0.2739 | 0.088* | |
C7 | 0.20743 (14) | 0.45820 (15) | 0.3617 (9) | 0.0677 (13) | |
H7 | 0.2276 | 0.4791 | 0.2491 | 0.081* | |
C8 | 0.16770 (12) | 0.47928 (12) | 0.5159 (10) | 0.0523 (10) | |
C9 | 0.15870 (14) | 0.53391 (13) | 0.4966 (13) | 0.0834 (14) | |
H9 | 0.1323 | 0.5466 | 0.6030 | 0.100* | |
O1 | 0.0000 | 0.5000 | 0.9830 (7) | 0.0529 (9) | |
O2 | 0.09910 (9) | 0.47057 (7) | 0.8266 (6) | 0.0563 (7) | |
O3 | 0.18230 (10) | 0.56356 (10) | 0.3560 (9) | 0.1276 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.066 (3) | 0.085 (3) | 0.054 (3) | −0.002 (2) | −0.005 (3) | 0.018 (2) |
C2 | 0.059 (2) | 0.061 (2) | 0.062 (3) | −0.007 (2) | −0.011 (2) | 0.023 (2) |
C3 | 0.044 (2) | 0.045 (2) | 0.059 (3) | 0.0026 (19) | −0.018 (2) | 0.003 (2) |
C4 | 0.060 (2) | 0.044 (2) | 0.083 (3) | −0.0005 (18) | −0.018 (3) | 0.0096 (19) |
C5 | 0.075 (3) | 0.047 (2) | 0.110 (4) | 0.010 (2) | −0.029 (3) | −0.009 (3) |
C6 | 0.069 (3) | 0.066 (3) | 0.084 (3) | 0.013 (2) | −0.012 (3) | −0.014 (3) |
C7 | 0.051 (3) | 0.073 (3) | 0.079 (3) | 0.002 (2) | −0.006 (2) | 0.007 (2) |
C8 | 0.0426 (19) | 0.049 (2) | 0.066 (2) | 0.0020 (18) | −0.014 (2) | 0.011 (2) |
C9 | 0.059 (3) | 0.053 (3) | 0.138 (4) | 0.004 (2) | 0.011 (3) | 0.023 (3) |
O1 | 0.0469 (17) | 0.066 (2) | 0.0457 (19) | −0.0031 (18) | 0.000 | 0.000 |
O2 | 0.0481 (13) | 0.0462 (13) | 0.0746 (18) | −0.0005 (12) | 0.0020 (13) | 0.0170 (14) |
O3 | 0.090 (2) | 0.0707 (18) | 0.222 (4) | 0.0013 (17) | 0.043 (3) | 0.068 (2) |
C1—O1 | 1.429 (4) | C4—H4 | 0.9300 |
C1—C2 | 1.496 (5) | C5—C6 | 1.381 (5) |
C1—H1A | 0.9700 | C5—H5 | 0.9300 |
C1—H1B | 0.9700 | C6—C7 | 1.377 (4) |
C2—O2 | 1.436 (4) | C6—H6 | 0.9300 |
C2—H2A | 0.9700 | C7—C8 | 1.407 (5) |
C2—H2B | 0.9700 | C7—H7 | 0.9300 |
C3—O2 | 1.368 (4) | C8—C9 | 1.466 (4) |
C3—C4 | 1.398 (4) | C9—O3 | 1.194 (4) |
C3—C8 | 1.405 (4) | C9—H9 | 0.9300 |
C4—C5 | 1.390 (5) | O1—C1i | 1.429 (4) |
O1—C1—C2 | 111.9 (3) | C6—C5—C4 | 121.7 (4) |
O1—C1—H1A | 109.2 | C6—C5—H5 | 119.2 |
C2—C1—H1A | 109.2 | C4—C5—H5 | 119.2 |
O1—C1—H1B | 109.2 | C7—C6—C5 | 119.1 (4) |
C2—C1—H1B | 109.2 | C7—C6—H6 | 120.4 |
H1A—C1—H1B | 107.9 | C5—C6—H6 | 120.4 |
O2—C2—C1 | 109.1 (3) | C6—C7—C8 | 121.0 (4) |
O2—C2—H2A | 109.9 | C6—C7—H7 | 119.5 |
C1—C2—H2A | 109.9 | C8—C7—H7 | 119.5 |
O2—C2—H2B | 109.9 | C3—C8—C7 | 119.4 (3) |
C1—C2—H2B | 109.9 | C3—C8—C9 | 121.1 (4) |
H2A—C2—H2B | 108.3 | C7—C8—C9 | 119.5 (4) |
O2—C3—C4 | 124.5 (3) | O3—C9—C8 | 125.7 (4) |
O2—C3—C8 | 116.1 (3) | O3—C9—H9 | 117.2 |
C4—C3—C8 | 119.4 (3) | C8—C9—H9 | 117.2 |
C5—C4—C3 | 119.5 (3) | C1i—O1—C1 | 109.1 (4) |
C5—C4—H4 | 120.2 | C3—O2—C2 | 117.8 (2) |
C3—C4—H4 | 120.2 | ||
O1—C1—C2—O2 | 69.3 (3) | C4—C3—C8—C9 | 179.4 (4) |
O2—C3—C4—C5 | −179.1 (3) | C6—C7—C8—C3 | −0.8 (6) |
C8—C3—C4—C5 | 0.7 (5) | C6—C7—C8—C9 | −180.0 (4) |
C3—C4—C5—C6 | −1.0 (6) | C3—C8—C9—O3 | −178.5 (4) |
C4—C5—C6—C7 | 0.5 (6) | C7—C8—C9—O3 | 0.6 (7) |
C5—C6—C7—C8 | 0.4 (6) | C2—C1—O1—C1i | 176.7 (3) |
O2—C3—C8—C7 | −180.0 (3) | C4—C3—O2—C2 | −3.0 (5) |
C4—C3—C8—C7 | 0.2 (5) | C8—C3—O2—C2 | 177.2 (3) |
O2—C3—C8—C9 | −0.8 (5) | C1—C2—O2—C3 | 170.5 (3) |
Symmetry code: (i) −x, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H18O5 |
Mr | 314.32 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 295 |
a, b, c (Å) | 27.613 (6), 26.404 (5), 4.4313 (9) |
V (Å3) | 3230.8 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.25 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4449, 1043, 480 |
Rint | 0.134 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.097, 0.99 |
No. of reflections | 1043 |
No. of parameters | 105 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.14 |
Computer programs: COLLECT (Nonius, 1998), PHICHI (Duisenberg et al., 2000), EVAL14 (CCD) (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The X-ray diffraction measurements were performed in the Laboratório de Difração de Raios X of the Universidade Federal Fluminense (LDRX-UFF), Niterói, Brazil. The authors thank CAPES, CNPq and FAPERJ for financial support. The co-editor is thanked for the transformation of the F2dd to the standard setting Fdd2, and for help with the solution and of the structure.
References
Biernat, J. F., Luboch, E., Cygan, A., Simonov, Y. A., Dvorkin, A. A., Muszalska, E. & Bilewicz, R. (1992). Tetrahedron, 48, 4399–4406. CSD CrossRef CAS Web of Science Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, pp 20. Berlin: Springer-Verlag. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Qi, A.-D., Zhu, Q.-H., He, Y.-Z. & Ren, X.-L. (2005). Acta Cryst. E61, o3784–o3785. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title molecule is generated by a symmetry operation according to the space group Fdd2. The symmetry operator (0, 1/2, z) applied to the equivalent atoms is a twofold rotation axis passing through the central atom O1 (Fig. 1). Bond lengths and angles are in the ranges reported for analogous structures (Biernat et al., 1992; Qi et al., 2005). The distances involving the C atoms in the central moiety are 1.496 (5) Å for C1—C2, 1.429 (4) Å for C1—O1, and 1.436 (4) Å for C2—O2.
The intramolecular C9—H9···O2 contact observed in the solid state (Fig. 1) is classificated as a non classical hydrogen bond (Jeffrey & Saenger, 1991). This secondary interaction does not affect the torsion angles in the 3-oxapentane chain. The torsion angle for the O2/C2/C1/O1 moiety is -69.3 (3)° and proves the flexibility of the 3-oxapentane chain. The hydrogen bonding geometry of the intramolecular contacts (Jeffrey & Saenger, 1991) with atom O2 as acceptor was calculated with PLATON (Spek, 2003): distances H9···O2 and C9···O2 are 2.42 and 2.764 (5) Å, respectively, and the angle at H9 is 102°.