organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,4-Di­methyl-N-(4-nitro­benz­yl)benzene­sulfonamide

aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: zhhy93@163.com

(Received 5 December 2007; accepted 5 January 2008; online 15 February 2008)

In the title compound, C15H16N2O4S, there is a dihedral angle of 63.30 (8)° between the nitro­benzyl and benzene rings, which are separated by a sulfonamide unit The crystal packing is stabilized by a C—H⋯O inter­action.

Related literature

For the use of aromatic nitro and amine compounds as precursors in dye synthesis, see: Lauwiner et al. (1998[Lauwiner, M., Rys, P. & Wissmann, J. (1998). Appl. Catal. A: Gen. 172, 141-148.]); Yang et al. (2004[Yang, X. W. & Yang, W. (2004). Shanghai Dyestuffs, 32, 20-30.]). For the preparation of the title compound, see: Andersen et al. (1988[Andersen, K. K., Chumpradit, S. & McIntyre, D. J. (1988). J. Org. Chem. 53, 4667-4675.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O4S

  • Mr = 320.36

  • Monoclinic, P 21 /c

  • a = 9.5694 (19) Å

  • b = 6.1335 (12) Å

  • c = 26.126 (5) Å

  • β = 100.03 (3)°

  • V = 1510.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 (2) K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2003[Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.977

  • 8935 measured reflections

  • 2661 independent reflections

  • 2188 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.123

  • S = 1.10

  • 2661 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.99 2.32 3.287 (4) 166
Symmetry code: (i) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2003[Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic amines are widely employed for organic synthesis, especially as dye intermediates. One method for preparing aromatic amines is reduction of the corresponding aromatic nitro compound (Lauwiner et al., 1998). In our recent work, the title compound (I), Fig. 1, was reduced to the corresponding aromatic amine for potential use as an intermediate in the synthesis of Acid Blue 264 dye according to Yang et al. (2004).

In (I), all bonds lengths and angles are normal (Allen et al., 1987). The dihedral angle between the two aryl rings is 63.30 (8) Å. The distances of S1—C1 and S1—N1 are 1.762 (3) and 1.637 (2) Å respectively. The neighboring molecules are linked together by weak C—H···O hydrogen bonds, Table 1.

Related literature top

For the use of aromatic nitro and amine compounds as precursors in dye synthesis, see: Lauwiner et al. (1998); Yang et al. (2004). For the preparation of the title compound, see: Andersen et al. (1988). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was synthesized according to the procedure of Andersen et al. (1988). Colorless single crystals (m.p. 403–404 K) were obtained by slow evaporation of a solution in absolute alcohol.

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2003); cell refinement: CrystalClear (Rigaku, 2003); data reduction: CrystalClear (Rigaku, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I) with hydrogen bonds drawn as dashed lines.
N,4-Dimethyl-N-(4-nitrobenzyl)benzenesulfonamide top
Crystal data top
C15H16N2O4SF(000) = 672
Mr = 320.36Dx = 1.409 Mg m3
Monoclinic, P21/cMelting point = 403–404 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.5694 (19) ÅCell parameters from 3609 reflections
b = 6.1335 (12) Åθ = 2.2–27.9°
c = 26.126 (5) ŵ = 0.23 mm1
β = 100.03 (3)°T = 113 K
V = 1510.0 (5) Å3Block, colorless
Z = 40.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2003)
k = 67
Tmin = 0.955, Tmax = 0.977l = 3126
8935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.1085P]
where P = (Fo2 + 2Fc2)/3
2661 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H16N2O4SV = 1510.0 (5) Å3
Mr = 320.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5694 (19) ŵ = 0.23 mm1
b = 6.1335 (12) ÅT = 113 K
c = 26.126 (5) Å0.20 × 0.18 × 0.10 mm
β = 100.03 (3)°
Data collection top
Rigaku Saturn
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2003)
2188 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.977Rint = 0.057
8935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.10Δρmax = 0.36 e Å3
2661 reflectionsΔρmin = 0.45 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12405 (8)0.46188 (11)0.13266 (3)0.0293 (2)
O10.0775 (3)0.6688 (3)0.14746 (9)0.0531 (7)
O20.2167 (2)0.4497 (4)0.09498 (8)0.0445 (6)
O30.5173 (2)0.0352 (3)0.10469 (8)0.0334 (5)
O40.5383 (2)0.3199 (3)0.05751 (8)0.0329 (5)
N10.0187 (2)0.3232 (3)0.10887 (9)0.0221 (5)
N20.4801 (2)0.1489 (4)0.06589 (9)0.0259 (5)
C10.2079 (3)0.3328 (4)0.19015 (11)0.0210 (6)
C20.2046 (3)0.4289 (5)0.23762 (12)0.0316 (7)
H20.15300.56010.23950.038*
C30.2765 (3)0.3336 (5)0.28224 (12)0.0311 (7)
H30.27380.40040.31490.037*
C40.3529 (3)0.1419 (4)0.28053 (11)0.0251 (6)
C50.3516 (3)0.0458 (4)0.23231 (12)0.0285 (7)
H50.40070.08780.23040.034*
C60.2809 (3)0.1393 (4)0.18703 (11)0.0264 (6)
H60.28230.07230.15430.032*
C70.4382 (3)0.0457 (5)0.32894 (12)0.0364 (8)
H7A0.53670.09590.33270.055*
H7B0.43560.11370.32650.055*
H7C0.39810.09220.35920.055*
C80.1208 (3)0.2999 (7)0.14427 (14)0.0496 (10)
H8A0.21390.26070.12440.074*
H8B0.12820.43810.16240.074*
H8C0.08860.18520.16970.074*
C90.0035 (3)0.1211 (4)0.08077 (12)0.0282 (7)
H9A0.03010.00200.10620.034*
H9B0.08310.14280.06160.034*
C100.1269 (3)0.0558 (4)0.04315 (11)0.0222 (6)
C110.1885 (3)0.1471 (4)0.04786 (11)0.0259 (6)
H110.14990.24030.07580.031*
C120.3050 (3)0.2153 (4)0.01256 (11)0.0235 (6)
H120.34730.35340.01590.028*
C130.3577 (3)0.0763 (4)0.02765 (11)0.0215 (6)
C140.2999 (3)0.1272 (4)0.03363 (11)0.0231 (6)
H140.33860.21950.06170.028*
C150.1842 (3)0.1921 (4)0.00249 (11)0.0223 (6)
H150.14350.33170.00060.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0358 (4)0.0223 (4)0.0238 (4)0.0080 (3)0.0117 (3)0.0051 (3)
O10.0816 (18)0.0182 (11)0.0437 (16)0.0046 (10)0.0330 (13)0.0008 (9)
O20.0393 (12)0.0675 (16)0.0242 (13)0.0274 (11)0.0015 (10)0.0159 (11)
O30.0316 (11)0.0426 (12)0.0224 (12)0.0005 (9)0.0054 (9)0.0013 (9)
O40.0290 (11)0.0425 (12)0.0269 (12)0.0163 (9)0.0041 (9)0.0049 (9)
N10.0191 (11)0.0236 (12)0.0210 (14)0.0015 (9)0.0036 (10)0.0023 (9)
N20.0232 (12)0.0347 (14)0.0199 (14)0.0022 (10)0.0039 (10)0.0082 (11)
C10.0172 (13)0.0232 (14)0.0192 (15)0.0034 (10)0.0060 (11)0.0046 (11)
C20.0344 (16)0.0269 (15)0.0291 (18)0.0094 (12)0.0067 (14)0.0033 (12)
C30.0319 (16)0.0401 (17)0.0188 (17)0.0110 (13)0.0027 (13)0.0033 (13)
C40.0195 (13)0.0292 (15)0.0257 (17)0.0019 (11)0.0018 (12)0.0074 (12)
C50.0241 (14)0.0258 (15)0.0344 (19)0.0062 (11)0.0023 (13)0.0022 (13)
C60.0255 (14)0.0321 (15)0.0212 (16)0.0008 (12)0.0034 (12)0.0032 (12)
C70.0321 (16)0.0421 (18)0.032 (2)0.0049 (13)0.0044 (14)0.0127 (14)
C80.0212 (16)0.093 (3)0.034 (2)0.0083 (17)0.0030 (15)0.0152 (19)
C90.0248 (15)0.0227 (14)0.0340 (19)0.0016 (11)0.0039 (13)0.0031 (12)
C100.0193 (13)0.0219 (14)0.0238 (16)0.0008 (11)0.0006 (12)0.0048 (11)
C110.0250 (14)0.0254 (14)0.0252 (17)0.0027 (11)0.0015 (12)0.0026 (12)
C120.0225 (14)0.0229 (14)0.0255 (17)0.0025 (11)0.0051 (12)0.0025 (11)
C130.0172 (13)0.0271 (14)0.0197 (16)0.0013 (10)0.0016 (11)0.0069 (11)
C140.0219 (14)0.0267 (14)0.0202 (16)0.0007 (11)0.0025 (12)0.0023 (11)
C150.0212 (14)0.0194 (13)0.0259 (17)0.0024 (10)0.0033 (12)0.0015 (11)
Geometric parameters (Å, º) top
S1—O11.421 (2)C7—H7A0.9800
S1—O21.437 (2)C7—H7B0.9800
S1—N11.637 (2)C7—H7C0.9800
S1—C11.762 (3)C8—H8A0.9800
O3—N21.231 (3)C8—H8B0.9800
O4—N21.225 (3)C8—H8C0.9800
N1—C81.464 (4)C9—C101.502 (4)
N1—C91.475 (3)C9—H9A0.9900
N2—C131.470 (3)C9—H9B0.9900
C1—C21.378 (4)C10—C151.387 (4)
C1—C61.387 (4)C10—C111.392 (4)
C2—C31.376 (4)C11—C121.382 (4)
C2—H20.9500C11—H110.9500
C3—C41.390 (4)C12—C131.379 (4)
C3—H30.9500C12—H120.9500
C4—C51.389 (4)C13—C141.385 (4)
C4—C71.502 (4)C14—C151.382 (4)
C5—C61.381 (4)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—H60.9500
O1—S1—O2119.53 (15)C4—C7—H7C109.5
O1—S1—N1106.68 (13)H7A—C7—H7C109.5
O2—S1—N1106.66 (13)H7B—C7—H7C109.5
O1—S1—C1106.68 (14)N1—C8—H8A109.5
O2—S1—C1108.47 (13)N1—C8—H8B109.5
N1—S1—C1108.43 (12)H8A—C8—H8B109.5
C8—N1—C9113.7 (2)N1—C8—H8C109.5
C8—N1—S1114.5 (2)H8A—C8—H8C109.5
C9—N1—S1116.25 (17)H8B—C8—H8C109.5
O4—N2—O3123.8 (2)N1—C9—C10112.0 (2)
O4—N2—C13118.1 (2)N1—C9—H9A109.2
O3—N2—C13118.0 (2)C10—C9—H9A109.2
C2—C1—C6120.6 (3)N1—C9—H9B109.2
C2—C1—S1119.8 (2)C10—C9—H9B109.2
C6—C1—S1119.6 (2)H9A—C9—H9B107.9
C3—C2—C1119.6 (3)C15—C10—C11119.3 (2)
C3—C2—H2120.2C15—C10—C9120.9 (2)
C1—C2—H2120.2C11—C10—C9119.8 (2)
C2—C3—C4121.3 (3)C12—C11—C10121.1 (3)
C2—C3—H3119.3C12—C11—H11119.5
C4—C3—H3119.3C10—C11—H11119.5
C5—C4—C3117.8 (3)C13—C12—C11117.9 (2)
C5—C4—C7121.0 (3)C13—C12—H12121.1
C3—C4—C7121.2 (3)C11—C12—H12121.1
C6—C5—C4121.7 (3)C12—C13—C14122.9 (2)
C6—C5—H5119.1C12—C13—N2118.3 (2)
C4—C5—H5119.1C14—C13—N2118.9 (2)
C5—C6—C1118.8 (3)C15—C14—C13118.1 (3)
C5—C6—H6120.6C15—C14—H14121.0
C1—C6—H6120.6C13—C14—H14121.0
C4—C7—H7A109.5C14—C15—C10120.8 (2)
C4—C7—H7B109.5C14—C15—H15119.6
H7A—C7—H7B109.5C10—C15—H15119.6
O1—S1—N1—C856.7 (3)C2—C1—C6—C50.7 (4)
O2—S1—N1—C8174.5 (2)S1—C1—C6—C5177.0 (2)
C1—S1—N1—C857.9 (2)C8—N1—C9—C1066.9 (3)
O1—S1—N1—C9167.4 (2)S1—N1—C9—C10156.8 (2)
O2—S1—N1—C938.6 (2)N1—C9—C10—C1560.7 (3)
C1—S1—N1—C978.0 (2)N1—C9—C10—C11121.6 (3)
O1—S1—C1—C26.3 (3)C15—C10—C11—C120.5 (4)
O2—S1—C1—C2136.2 (2)C9—C10—C11—C12177.3 (3)
N1—S1—C1—C2108.3 (2)C10—C11—C12—C130.3 (4)
O1—S1—C1—C6171.4 (2)C11—C12—C13—C140.6 (4)
O2—S1—C1—C641.4 (2)C11—C12—C13—N2179.0 (2)
N1—S1—C1—C674.0 (2)O4—N2—C13—C127.1 (4)
C6—C1—C2—C31.1 (4)O3—N2—C13—C12172.3 (2)
S1—C1—C2—C3176.6 (2)O4—N2—C13—C14173.3 (2)
C1—C2—C3—C40.1 (5)O3—N2—C13—C147.3 (4)
C2—C3—C4—C51.6 (4)C12—C13—C14—C150.0 (4)
C2—C3—C4—C7176.3 (3)N2—C13—C14—C15179.5 (2)
C3—C4—C5—C62.0 (4)C13—C14—C15—C100.8 (4)
C7—C4—C5—C6175.9 (3)C11—C10—C15—C141.0 (4)
C4—C5—C6—C10.9 (4)C9—C10—C15—C14176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.323.287 (4)166
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O4S
Mr320.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)9.5694 (19), 6.1335 (12), 26.126 (5)
β (°) 100.03 (3)
V3)1510.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2003)
Tmin, Tmax0.955, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8935, 2661, 2188
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.123, 1.10
No. of reflections2661
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: CrystalClear (Rigaku, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.323.287 (4)165.7
Symmetry code: (i) x, y1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAndersen, K. K., Chumpradit, S. & McIntyre, D. J. (1988). J. Org. Chem. 53, 4667–4675.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLauwiner, M., Rys, P. & Wissmann, J. (1998). Appl. Catal. A: Gen. 172, 141–148.  Google Scholar
First citationRigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. W. & Yang, W. (2004). Shanghai Dyestuffs, 32, 20–30.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds