organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Benzyl­oxyphen­yl)-1H-benzimid­azole

aFacultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 8 February 2008; accepted 14 February 2008; online 20 February 2008)

The asymmetric unit of the title compound, C20H16N2O, contains two mol­ecules. The dihedral angles between the benzimidazole ring systems and the attached benzene rings are 10.6 (5) and 13.7 (5)°. The conformers are linked by bifurcated three-centre hydrogen bonds, forming chains along the diagonal of the ab plane. The packing is further stabilized by ππ and C—H⋯π inter­actions.

Related literature

For general background, see: Desiraju & Steiner (1999[Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5-6. New York: Oxford University Press.]); Lehn (1990[Lehn, J.-M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1319.]); Saenger (1984[Saenger, W. (1984). Principles of Nucleic Acid Structure, pp. 132-140. New York: Springer-Verlag.]); Wakelin (1986[Wakelin, L. P. G. (1986). Med. Res. Rev. 6, 275-340.]). For related structures, see: Estrada-Soto et al. (2006[Estrada-Soto, S., Villalobos-Molina, R., Aguirre-Crespo, F., Vergara-Galicia, J., Moreno-Diaz, H., Torres-Piedra, M. & Navarrete-Vázquez, G. (2006). Life Sci. 79, 430-435.]); Moreno-Diaz et al. (2006[Moreno-Diaz, H., Navarrete-Vázquez, G., Estrada-Soto, S. & Tlahuext, H. (2006). Acta Cryst. E62, o2601-o2602.]); Navarrete-Vázquez et al. (2006[Navarrete-Vázquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., León-Rivera, I., Villalobos-Molina, R., Muñoz-Muñiz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169-4173.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O

  • Mr = 300.35

  • Monoclinic, C c

  • a = 11.526 (2) Å

  • b = 17.210 (3) Å

  • c = 15.866 (3) Å

  • β = 90.52 (3)°

  • V = 3147.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.31 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.987

  • 7808 measured reflections

  • 2830 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.100

  • S = 1.17

  • 2830 reflections

  • 423 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C27/N4/C26/C21/N3 imidazole ring, and Cg2, Cg3 and Cg4 are the centroids of the C28–C33, C15–C20 and C35–C40 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.89 (4) 2.20 (3) 2.667 (4) 112 (3)
N1—H1⋯N4i 0.89 (4) 2.18 (3) 3.008 (4) 154 (3)
N3—H3A⋯O2 0.83 (4) 2.20 (5) 2.670 (4) 117 (4)
N3—H3A⋯N2ii 0.83 (4) 2.18 (5) 2.918 (4) 148 (4)
C14—H14ACg1i 0.97 2.88 3.736 (4) 148
C14—H14BCg4iii 0.97 2.92 3.721 (4) 141
Cg3⋯Cg2i     3.859 (2)  
Symmetry codes: (i) [x-1, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Version 5.618. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus NT (Bruker, 2001[Bruker (2001). SAINT-Plus NT. Version 6.04. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrogen bonding and ππ interactions are among the principal forces which determine the intercalation of drugs into DNA (Saenger, 1984; Wakelin, 1986), together with self-assembly and recognition in some chemical and biological systems (Lehn, 1990). Recently, we have reported the synthesis of a small library of 2-arylbenzimidazole compounds that show spasmolytic and relaxant activity (Moreno-Diaz et al., 2006; Navarrete-Vázquez et al., 2006; Estrada-Soto et al., 2006). In order to extend our research on the relationship between the structure of benzimidazole derivatives and their pharmacological activity we have determined the crystal structure of (I).

The asymmetric unit of (I) contains two conformers (Ia, Ib) (Fig. 1). Bond lengths between equivalent non-H atoms of each conformer are similar, with differences less than 3 s.u. The dihedral angles between the benzimidazole ring systems and the 2-benzyloxyphenyl substituents in Ia and Ib are 10.6 (5) and 13.7 (5)°, respectively. Both molecules display bifurcated N—H···N and N—H···O hydrogen bonds, Table 1 (Desiraju & Steiner, 1999). These hydrogen bonds interconnect molecules into chains running between the a and b axes (Fig. 2). Packing is further stabilized by C—H···π interactions involving the methylene H atoms on C14 of molecule Ia with the C27N4C26C21N3 benzimidazole ring (centroid Cg1) and the C28–C33 benzene ring (centroid Cg4) of two adjacent molecules of Ib (Fig. 3, Table 1). In the crystal packing there are also ππ interactions between adjacent molecules Ia and Ib, with a distance between the centroids of the C15–C20 (Cg3) and C28–C33 (Cg2) benzene rings of 3.859 (2) Å (Fig. 3, Table 1). In conclusion, this crystal structure illustrates four types of cooperative intra and intermolecular interactions: offset ππ stacking and C—H···π interactions as well as classical N—H···N and N—H···O hydrogen bonds.

Related literature top

For general background, see: Desiraju & Steiner (1999); Lehn (1990); Saenger (1984); Wakelin (1986). For related structures, see: Estrada-Soto et al. (2006); Moreno-Diaz et al. (2006); Navarrete-Vázquez et al. (2006).

Experimental top

The title compound, (I), was synthesized according to the method of Moreno-Diaz et al. (2006). Single crystals of (I) were obtained from methanol with yield 2.07 g, 75%.

Refinement top

Aromatic and methylene H atoms were positioned geometrically, were constrained to the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2Ueq(Caryl); C—Hmethylene = 0.97 Å, a Uiso(Hmethylene) = 1.5 Ueq(Cmethylene)]. Atoms H1 and H3A, which are involved in hydrogen-bonding interactions, were located in a difference Fourier map and refined freely with isotropic displacement parameters. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: Please provide details; data reduction: SAINT-Plus NT (Bruker, 2001); program(s) used to solve structure: SHELXTL NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL NT (Sheldrick, 2008); molecular graphics: SHELXTL NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the crystal packing of (I), showing the formation of chains. Hydrogen bonds are represented by dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. View of the offset ππ interactions and the C–H···π-facial hydrogen bonds between methylene group of Ia and the imidazole and aryl rings of Ib. Dashed lines indicate the vectors between C14 and the benzimidazole and aryl centroids of Ib (Cg1, Cg4). For clarity on part of the Ia molecule is shown.
2-(2-Benzyloxyphenyl)-1H-benzimidazole top
Crystal data top
C20H16N2OF(000) = 1264
Mr = 300.35Dx = 1.268 Mg m3
Monoclinic, CcMelting point: 415.5 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.526 (2) ÅCell parameters from 68 reflections
b = 17.210 (3) Åθ = 2.6–25.2°
c = 15.866 (3) ŵ = 0.08 mm1
β = 90.52 (3)°T = 293 K
V = 3147.0 (11) Å3Rectangular, colourless
Z = 80.31 × 0.21 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3 pixels mm-1θmax = 25.2°, θmin = 2.1°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2011
Tmin = 0.976, Tmax = 0.987l = 1916
7808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.4648P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max < 0.001
423 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H16N2OV = 3147.0 (11) Å3
Mr = 300.35Z = 8
Monoclinic, CcMo Kα radiation
a = 11.526 (2) ŵ = 0.08 mm1
b = 17.210 (3) ÅT = 293 K
c = 15.866 (3) Å0.31 × 0.21 × 0.17 mm
β = 90.52 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2691 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.987Rint = 0.038
7808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.20 e Å3
2830 reflectionsΔρmin = 0.20 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0469 (3)0.1160 (2)0.3249 (2)0.0179 (8)
C20.0279 (3)0.1316 (2)0.3917 (2)0.0213 (8)
H20.07550.17520.39200.026*
C30.0273 (3)0.0789 (2)0.4571 (2)0.0234 (8)
H30.07350.08800.50380.028*
C40.0419 (3)0.0115 (2)0.4547 (2)0.0243 (9)
H40.03890.02340.49940.029*
C50.1134 (3)0.0040 (2)0.3885 (2)0.0241 (9)
H50.15890.04860.38780.029*
C60.1160 (3)0.0492 (2)0.3217 (2)0.0176 (8)
C70.1528 (3)0.1149 (2)0.2093 (2)0.0161 (7)
C80.2074 (3)0.1393 (2)0.1295 (2)0.0175 (8)
C90.1951 (3)0.2138 (2)0.0950 (2)0.0183 (8)
C100.2567 (3)0.2342 (2)0.0234 (2)0.0251 (9)
H100.25010.28400.00120.030*
C110.3279 (3)0.1801 (2)0.0149 (2)0.0250 (9)
H110.36930.19430.06250.030*
C120.3387 (3)0.1057 (2)0.0163 (2)0.0254 (9)
H120.38540.06940.01070.031*
C130.2787 (3)0.0857 (2)0.0886 (2)0.0219 (8)
H130.28600.03570.11030.026*
C140.1043 (3)0.3400 (2)0.1037 (2)0.0219 (8)
H14A0.03190.36040.12520.026*
H14B0.09760.33800.04270.026*
C150.2018 (3)0.3952 (2)0.1275 (2)0.0199 (8)
C160.2041 (3)0.4669 (2)0.0885 (2)0.0229 (8)
H160.14730.47960.04880.027*
C170.2905 (3)0.5204 (2)0.1082 (2)0.0260 (9)
H170.29180.56840.08130.031*
C180.3752 (4)0.5020 (2)0.1683 (2)0.0294 (9)
H180.43340.53740.18180.035*
C190.3714 (3)0.4304 (2)0.2071 (2)0.0276 (9)
H190.42720.41800.24760.033*
C200.2863 (3)0.3768 (2)0.1872 (2)0.0234 (9)
H200.28560.32860.21360.028*
C210.7495 (3)0.6470 (2)0.7012 (2)0.0180 (8)
C220.6466 (3)0.6399 (2)0.6541 (2)0.0224 (8)
H220.61030.59220.64630.027*
C230.6018 (3)0.7076 (2)0.6200 (2)0.0268 (9)
H230.53310.70540.58890.032*
C240.6575 (4)0.7794 (2)0.6310 (2)0.0274 (9)
H240.62570.82350.60620.033*
C250.7588 (3)0.7861 (2)0.6781 (2)0.0237 (9)
H250.79430.83400.68650.028*
C260.8057 (3)0.7180 (2)0.7126 (2)0.0191 (8)
C270.9128 (3)0.6312 (2)0.7734 (2)0.0183 (8)
C281.0124 (3)0.5952 (2)0.8170 (2)0.0196 (8)
C291.0358 (3)0.5147 (2)0.8146 (2)0.0238 (8)
C301.1374 (3)0.4861 (2)0.8502 (2)0.0270 (9)
H301.15330.43320.84800.032*
C311.2149 (3)0.5359 (3)0.8887 (2)0.0301 (10)
H311.28360.51640.91150.036*
C321.1918 (3)0.6145 (3)0.8941 (2)0.0308 (10)
H321.24370.64730.92170.037*
C331.0913 (3)0.6440 (2)0.8583 (2)0.0247 (9)
H331.07610.69700.86180.030*
C340.9791 (4)0.3883 (2)0.7630 (2)0.0288 (9)
H34A1.05960.38280.74680.035*
H34B0.93140.36860.71710.035*
C350.9579 (3)0.3394 (2)0.8407 (2)0.0232 (8)
C360.8786 (4)0.3607 (2)0.9019 (3)0.0324 (10)
H360.83900.40760.89700.039*
C370.8581 (4)0.3123 (3)0.9702 (3)0.0367 (11)
H370.80490.32711.01100.044*
C380.9165 (4)0.2422 (3)0.9780 (3)0.0320 (10)
H380.90330.21021.02410.038*
C390.9938 (4)0.2205 (2)0.9173 (3)0.0321 (10)
H391.03200.17310.92210.039*
C401.0159 (3)0.2682 (2)0.8486 (2)0.0260 (9)
H401.06890.25280.80800.031*
N10.0711 (3)0.15646 (17)0.25172 (18)0.0174 (6)
N20.1813 (3)0.04949 (17)0.24872 (17)0.0191 (7)
N30.8195 (3)0.59233 (18)0.74010 (19)0.0197 (7)
N40.9075 (3)0.70755 (17)0.75867 (17)0.0180 (7)
O10.1204 (2)0.26267 (14)0.13499 (15)0.0230 (6)
O20.9538 (2)0.46984 (15)0.77489 (16)0.0266 (6)
H10.038 (3)0.202 (2)0.241 (2)0.015 (9)*
H3A0.807 (4)0.545 (3)0.740 (3)0.034 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (2)0.0171 (18)0.0143 (17)0.0041 (16)0.0013 (14)0.0012 (14)
C20.022 (2)0.0161 (18)0.026 (2)0.0017 (16)0.0013 (15)0.0000 (16)
C30.024 (2)0.027 (2)0.0197 (18)0.0024 (17)0.0014 (15)0.0030 (17)
C40.032 (2)0.023 (2)0.0186 (18)0.0037 (18)0.0018 (16)0.0068 (15)
C50.028 (2)0.0168 (19)0.027 (2)0.0005 (17)0.0035 (16)0.0012 (17)
C60.018 (2)0.0155 (18)0.0189 (18)0.0015 (15)0.0006 (15)0.0024 (15)
C70.0180 (19)0.0121 (18)0.0182 (17)0.0026 (15)0.0024 (14)0.0031 (14)
C80.0142 (18)0.0204 (19)0.0179 (17)0.0069 (15)0.0038 (14)0.0025 (15)
C90.021 (2)0.0167 (18)0.0170 (18)0.0002 (16)0.0015 (15)0.0009 (15)
C100.029 (2)0.020 (2)0.026 (2)0.0009 (18)0.0023 (16)0.0019 (17)
C110.027 (2)0.028 (2)0.0198 (19)0.0064 (18)0.0087 (16)0.0008 (16)
C120.028 (2)0.024 (2)0.0248 (19)0.0042 (18)0.0069 (16)0.0085 (17)
C130.023 (2)0.0181 (19)0.0249 (19)0.0030 (17)0.0031 (15)0.0018 (16)
C140.027 (2)0.0172 (19)0.0217 (19)0.0021 (17)0.0031 (15)0.0033 (16)
C150.023 (2)0.019 (2)0.0179 (18)0.0047 (16)0.0056 (15)0.0003 (15)
C160.028 (2)0.0211 (19)0.0199 (18)0.0051 (17)0.0026 (16)0.0024 (16)
C170.035 (2)0.018 (2)0.026 (2)0.0010 (18)0.0052 (17)0.0031 (16)
C180.031 (2)0.030 (2)0.027 (2)0.0011 (19)0.0056 (17)0.0133 (18)
C190.018 (2)0.040 (2)0.025 (2)0.0062 (18)0.0013 (15)0.0056 (18)
C200.024 (2)0.025 (2)0.0206 (19)0.0045 (17)0.0041 (16)0.0008 (16)
C210.0165 (19)0.0150 (17)0.0225 (18)0.0006 (15)0.0019 (14)0.0017 (15)
C220.022 (2)0.0182 (19)0.0270 (19)0.0031 (16)0.0006 (15)0.0009 (16)
C230.021 (2)0.028 (2)0.032 (2)0.0030 (18)0.0043 (16)0.0006 (18)
C240.036 (2)0.023 (2)0.024 (2)0.0075 (18)0.0045 (17)0.0053 (17)
C250.029 (2)0.0189 (19)0.023 (2)0.0057 (17)0.0084 (16)0.0035 (16)
C260.020 (2)0.0211 (19)0.0163 (17)0.0003 (16)0.0039 (14)0.0010 (15)
C270.0184 (19)0.0175 (18)0.0191 (17)0.0065 (16)0.0060 (14)0.0012 (15)
C280.0171 (19)0.0230 (19)0.0186 (17)0.0029 (17)0.0068 (14)0.0019 (16)
C290.026 (2)0.027 (2)0.0177 (18)0.0016 (18)0.0014 (15)0.0022 (17)
C300.027 (2)0.029 (2)0.0249 (19)0.0037 (18)0.0020 (16)0.0024 (18)
C310.018 (2)0.048 (3)0.024 (2)0.001 (2)0.0043 (16)0.012 (2)
C320.027 (2)0.041 (3)0.024 (2)0.0114 (19)0.0042 (17)0.0071 (19)
C330.022 (2)0.029 (2)0.0226 (18)0.0045 (18)0.0018 (16)0.0004 (17)
C340.032 (2)0.023 (2)0.031 (2)0.0075 (19)0.0077 (18)0.0064 (17)
C350.020 (2)0.024 (2)0.026 (2)0.0005 (16)0.0070 (16)0.0040 (16)
C360.024 (2)0.030 (2)0.044 (2)0.0056 (19)0.0039 (19)0.007 (2)
C370.023 (2)0.053 (3)0.034 (2)0.014 (2)0.0047 (18)0.009 (2)
C380.033 (3)0.029 (2)0.034 (2)0.016 (2)0.0012 (19)0.0032 (19)
C390.033 (2)0.023 (2)0.040 (2)0.0030 (19)0.0056 (19)0.0005 (19)
C400.025 (2)0.025 (2)0.029 (2)0.0021 (18)0.0007 (16)0.0053 (18)
N10.0187 (17)0.0113 (15)0.0222 (16)0.0033 (13)0.0026 (12)0.0008 (13)
N20.0202 (17)0.0152 (15)0.0219 (16)0.0006 (13)0.0023 (13)0.0016 (13)
N30.0213 (17)0.0133 (16)0.0244 (16)0.0015 (14)0.0008 (13)0.0004 (14)
N40.0190 (16)0.0200 (15)0.0149 (15)0.0029 (14)0.0011 (12)0.0004 (12)
O10.0251 (14)0.0162 (13)0.0279 (14)0.0043 (12)0.0073 (11)0.0033 (11)
O20.0246 (15)0.0203 (14)0.0346 (15)0.0045 (12)0.0103 (12)0.0028 (12)
Geometric parameters (Å, º) top
C1—N11.384 (4)C21—C261.394 (5)
C1—C21.399 (5)C21—C221.401 (5)
C1—C61.400 (5)C22—C231.382 (5)
C2—C31.378 (5)C22—H220.9300
C2—H20.9300C23—C241.403 (6)
C3—C41.408 (5)C23—H230.9300
C3—H30.9300C24—C251.385 (5)
C4—C51.367 (5)C24—H240.9300
C4—H40.9300C25—C261.399 (5)
C5—C61.401 (5)C25—H250.9300
C5—H50.9300C26—N41.388 (4)
C6—N21.387 (4)C27—N41.335 (4)
C7—N21.327 (4)C27—N31.368 (4)
C7—N11.365 (4)C27—C281.472 (5)
C7—C81.480 (5)C28—C331.398 (5)
C8—C131.399 (5)C28—C291.412 (5)
C8—C91.402 (5)C29—O21.370 (4)
C9—O11.365 (4)C29—C301.386 (5)
C9—C101.390 (5)C30—C311.376 (5)
C10—C111.384 (5)C30—H300.9300
C10—H100.9300C31—C321.381 (6)
C11—C121.379 (5)C31—H310.9300
C11—H110.9300C32—C331.382 (5)
C12—C131.389 (5)C32—H320.9300
C12—H120.9300C33—H330.9300
C13—H130.9300C34—O21.447 (4)
C14—O11.431 (4)C34—C351.514 (5)
C14—C151.517 (5)C34—H34A0.9700
C14—H14A0.9700C34—H34B0.9700
C14—H14B0.9700C35—C361.388 (5)
C15—C161.382 (5)C35—C401.401 (5)
C15—C201.388 (5)C36—C371.389 (6)
C16—C171.389 (5)C36—H360.9300
C16—H160.9300C37—C381.387 (6)
C17—C181.395 (5)C37—H370.9300
C17—H170.9300C38—C391.370 (6)
C18—C191.378 (6)C38—H380.9300
C18—H180.9300C39—C401.390 (6)
C19—C201.381 (5)C39—H390.9300
C19—H190.9300C40—H400.9300
C20—H200.9300N1—H10.89 (4)
C21—N31.382 (5)N3—H3A0.83 (4)
N1—C1—C2132.0 (3)C21—C22—H22121.8
N1—C1—C6105.3 (3)C22—C23—C24121.7 (4)
C2—C1—C6122.6 (3)C22—C23—H23119.2
C3—C2—C1116.4 (4)C24—C23—H23119.2
C3—C2—H2121.8C25—C24—C23121.5 (4)
C1—C2—H2121.8C25—C24—H24119.2
C2—C3—C4121.4 (4)C23—C24—H24119.2
C2—C3—H3119.3C24—C25—C26117.5 (3)
C4—C3—H3119.3C24—C25—H25121.2
C5—C4—C3121.8 (3)C26—C25—H25121.2
C5—C4—H4119.1N4—C26—C21110.2 (3)
C3—C4—H4119.1N4—C26—C25129.5 (3)
C4—C5—C6118.1 (3)C21—C26—C25120.3 (3)
C4—C5—H5121.0N4—C27—N3112.3 (3)
C6—C5—H5121.0N4—C27—C28122.0 (3)
N2—C6—C1109.9 (3)N3—C27—C28125.6 (3)
N2—C6—C5130.5 (3)C33—C28—C29118.6 (4)
C1—C6—C5119.6 (3)C33—C28—C27117.9 (3)
N2—C7—N1112.4 (3)C29—C28—C27123.3 (3)
N2—C7—C8122.6 (3)O2—C29—C30124.4 (3)
N1—C7—C8125.0 (3)O2—C29—C28115.7 (3)
C13—C8—C9118.7 (3)C30—C29—C28119.9 (4)
C13—C8—C7117.8 (3)C31—C30—C29120.2 (4)
C9—C8—C7123.5 (3)C31—C30—H30119.9
O1—C9—C10123.7 (3)C29—C30—H30119.9
O1—C9—C8116.3 (3)C30—C31—C32120.8 (4)
C10—C9—C8120.0 (3)C30—C31—H31119.6
C11—C10—C9119.9 (3)C32—C31—H31119.6
C11—C10—H10120.1C31—C32—C33119.8 (4)
C9—C10—H10120.1C31—C32—H32120.1
C12—C11—C10121.3 (3)C33—C32—H32120.1
C12—C11—H11119.3C32—C33—C28120.7 (4)
C10—C11—H11119.3C32—C33—H33119.7
C11—C12—C13118.8 (4)C28—C33—H33119.7
C11—C12—H12120.6O2—C34—C35113.5 (3)
C13—C12—H12120.6O2—C34—H34A108.9
C12—C13—C8121.3 (3)C35—C34—H34A108.9
C12—C13—H13119.4O2—C34—H34B108.9
C8—C13—H13119.4C35—C34—H34B108.9
O1—C14—C15113.7 (3)H34A—C34—H34B107.7
O1—C14—H14A108.8C36—C35—C40119.1 (4)
C15—C14—H14A108.8C36—C35—C34122.3 (3)
O1—C14—H14B108.8C40—C35—C34118.6 (3)
C15—C14—H14B108.8C35—C36—C37120.3 (4)
H14A—C14—H14B107.7C35—C36—H36119.9
C16—C15—C20119.5 (4)C37—C36—H36119.9
C16—C15—C14117.7 (3)C38—C37—C36120.4 (4)
C20—C15—C14122.8 (3)C38—C37—H37119.8
C15—C16—C17120.5 (3)C36—C37—H37119.8
C15—C16—H16119.7C39—C38—C37119.6 (4)
C17—C16—H16119.7C39—C38—H38120.2
C16—C17—C18120.0 (4)C37—C38—H38120.2
C16—C17—H17120.0C38—C39—C40121.0 (4)
C18—C17—H17120.0C38—C39—H39119.5
C19—C18—C17118.9 (4)C40—C39—H39119.5
C19—C18—H18120.6C39—C40—C35119.7 (4)
C17—C18—H18120.6C39—C40—H40120.1
C18—C19—C20121.3 (4)C35—C40—H40120.1
C18—C19—H19119.3C7—N1—C1107.1 (3)
C20—C19—H19119.3C7—N1—H1131 (2)
C19—C20—C15119.8 (4)C1—N1—H1121 (2)
C19—C20—H20120.1C7—N2—C6105.3 (3)
C15—C20—H20120.1C27—N3—C21107.0 (3)
N3—C21—C26105.6 (3)C27—N3—H3A128 (3)
N3—C21—C22131.8 (3)C21—N3—H3A125 (3)
C26—C21—C22122.5 (3)C27—N4—C26104.9 (3)
C23—C22—C21116.5 (3)C9—O1—C14119.4 (3)
C23—C22—H22121.8C29—O2—C34117.9 (3)
N1—C1—C2—C3177.8 (4)N4—C27—C28—C3312.9 (5)
C6—C1—C2—C32.5 (5)N3—C27—C28—C33170.4 (3)
C1—C2—C3—C42.4 (5)N4—C27—C28—C29163.0 (3)
C2—C3—C4—C51.4 (6)N3—C27—C28—C2913.7 (5)
C3—C4—C5—C60.3 (5)C33—C28—C29—O2178.5 (3)
N1—C1—C6—N20.5 (4)C27—C28—C29—O25.7 (5)
C2—C1—C6—N2179.7 (3)C33—C28—C29—C302.3 (5)
N1—C1—C6—C5178.7 (3)C27—C28—C29—C30173.6 (3)
C2—C1—C6—C51.5 (5)O2—C29—C30—C31180.0 (4)
C4—C5—C6—N2178.2 (4)C28—C29—C30—C310.8 (5)
C4—C5—C6—C10.4 (5)C29—C30—C31—C321.3 (6)
N2—C7—C8—C139.5 (5)C30—C31—C32—C331.8 (6)
N1—C7—C8—C13172.1 (3)C31—C32—C33—C280.2 (6)
N2—C7—C8—C9167.8 (3)C29—C28—C33—C321.8 (5)
N1—C7—C8—C910.6 (5)C27—C28—C33—C32174.3 (3)
C13—C8—C9—O1177.0 (3)O2—C34—C35—C3626.2 (5)
C7—C8—C9—O15.7 (5)O2—C34—C35—C40157.3 (3)
C13—C8—C9—C102.5 (5)C40—C35—C36—C370.6 (6)
C7—C8—C9—C10174.8 (3)C34—C35—C36—C37177.1 (4)
O1—C9—C10—C11177.9 (3)C35—C36—C37—C380.1 (6)
C8—C9—C10—C111.6 (5)C36—C37—C38—C390.7 (6)
C9—C10—C11—C120.5 (6)C37—C38—C39—C401.0 (6)
C10—C11—C12—C131.5 (6)C38—C39—C40—C350.4 (6)
C11—C12—C13—C80.5 (6)C36—C35—C40—C390.4 (5)
C9—C8—C13—C121.5 (5)C34—C35—C40—C39176.9 (3)
C7—C8—C13—C12176.0 (3)N2—C7—N1—C11.5 (4)
O1—C14—C15—C16169.2 (3)C8—C7—N1—C1177.0 (3)
O1—C14—C15—C2011.9 (5)C2—C1—N1—C7179.1 (4)
C20—C15—C16—C170.5 (5)C6—C1—N1—C71.2 (4)
C14—C15—C16—C17179.4 (3)N1—C7—N2—C61.2 (4)
C15—C16—C17—C180.6 (5)C8—C7—N2—C6177.4 (3)
C16—C17—C18—C190.0 (5)C1—C6—N2—C70.4 (4)
C17—C18—C19—C200.6 (6)C5—C6—N2—C7177.6 (4)
C18—C19—C20—C150.7 (5)N4—C27—N3—C210.1 (4)
C16—C15—C20—C190.2 (5)C28—C27—N3—C21176.8 (3)
C14—C15—C20—C19178.7 (3)C26—C21—N3—C270.4 (4)
N3—C21—C22—C23176.6 (4)C22—C21—N3—C27176.7 (4)
C26—C21—C22—C230.9 (5)N3—C27—N4—C260.6 (4)
C21—C22—C23—C240.8 (6)C28—C27—N4—C26176.5 (3)
C22—C23—C24—C251.3 (6)C21—C26—N4—C270.9 (4)
C23—C24—C25—C261.7 (5)C25—C26—N4—C27177.9 (4)
N3—C21—C26—N40.8 (4)C10—C9—O1—C141.1 (5)
C22—C21—C26—N4177.6 (3)C8—C9—O1—C14179.4 (3)
N3—C21—C26—C25178.1 (3)C15—C14—O1—C978.0 (4)
C22—C21—C26—C251.4 (5)C30—C29—O2—C345.5 (5)
C24—C25—C26—N4176.9 (3)C28—C29—O2—C34173.7 (3)
C24—C25—C26—C211.7 (5)C35—C34—O2—C2980.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (4)2.20 (3)2.667 (4)112 (3)
N1—H1···N4i0.89 (4)2.18 (3)3.008 (4)154 (3)
N3—H3A···O20.83 (4)2.20 (5)2.670 (4)117 (4)
N3—H3A···N2ii0.83 (4)2.18 (5)2.918 (4)148 (4)
C14—H14A···Cg1i0.972.883.736 (4)148
C14—H14B···Cg4iii0.972.923.721 (4)141
Cg3···Cg2i3.859 (2)
Symmetry codes: (i) x1, y+1, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC20H16N2O
Mr300.35
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)11.526 (2), 17.210 (3), 15.866 (3)
β (°) 90.52 (3)
V3)3147.0 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.976, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7808, 2830, 2691
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.17
No. of reflections2830
No. of parameters423
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: SMART (Bruker, 2000), Please provide details, SAINT-Plus NT (Bruker, 2001), SHELXTL NT (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (4)2.20 (3)2.667 (4)112 (3)
N1—H1···N4i0.89 (4)2.18 (3)3.008 (4)154 (3)
N3—H3A···O20.83 (4)2.20 (5)2.670 (4)117 (4)
N3—H3A···N2ii0.83 (4)2.18 (5)2.918 (4)148 (4)
C14—H14A···Cg1i0.972.883.736 (4)148
C14—H14B···Cg4iii0.972.923.721 (4)141
Cg3···Cg2i..3.859 (2).
Symmetry codes: (i) x1, y+1, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z1.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant Nos. 3562P-E and PROMEP-SEP UAEMOR-PTC-131 (GNV).

References

First citationBruker (2000). SMART. Version 5.618. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus NT. Version 6.04. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5–6. New York: Oxford University Press.  Google Scholar
First citationEstrada-Soto, S., Villalobos-Molina, R., Aguirre-Crespo, F., Vergara-Galicia, J., Moreno-Diaz, H., Torres-Piedra, M. & Navarrete-Vázquez, G. (2006). Life Sci. 79, 430–435.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehn, J.-M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1319.  CrossRef Web of Science Google Scholar
First citationMoreno-Diaz, H., Navarrete-Vázquez, G., Estrada-Soto, S. & Tlahuext, H. (2006). Acta Cryst. E62, o2601–o2602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNavarrete-Vázquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., León-Rivera, I., Villalobos-Molina, R., Muñoz-Muñiz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169–4173.  Web of Science PubMed Google Scholar
First citationSaenger, W. (1984). Principles of Nucleic Acid Structure, pp. 132–140. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakelin, L. P. G. (1986). Med. Res. Rev. 6, 275–340.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds