organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-5-(4-meth­oxy­benzyl­­idene­amino)-1H-pyrazole-3-carbo­nitrile

aDepartment of Food and Biotechnology, Zhangzhou Vocational Technical College, 363000 Zhangzhou, People's Republic of China
*Correspondence e-mail: lisy910@163.com

(Received 12 February 2008; accepted 27 February 2008; online 29 February 2008)

The title compound, C19H10BrCl2F3N4O, is an imine with an overall Y shape. The dihedral angles between the pyrazole ring and the methoxy- and trifluoromethyl-substituted benzene ring planes are 88.4 (2) and 65.8 (2)°, respectively.

Related literature

For the insecticidal properties of similar compounds, see: Philippe (1997[Philippe, J. (1997). US Patent No. 6 001 384.], 2000[Philippe, J. (2000). US Patent No. 6 096 329.]). For a related structure, see: Zhong et al. (2005[Zhong, P., Yang, Z. & Shi, Q. (2005). Acta Cryst. E61, o786-o787.]).

[Scheme 1]

Experimental

Crystal data
  • C19H10BrCl2F3N4O

  • Mr = 518.12

  • Monoclinic, P 21 /c

  • a = 10.215 (7) Å

  • b = 13.407 (9) Å

  • c = 15.108 (11) Å

  • β = 94.634 (13)°

  • V = 2062 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 293 (2) K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker P4/SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Winsonsin, USA.]) Tmin = 0.568, Tmax = 0.618

  • 15375 measured reflections

  • 4681 independent reflections

  • 4061 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.160

  • S = 1.02

  • 4681 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1) is similar to the very effective insecticides used to treat animals such as cows and sheep (Philippe, 1997, 2000) and its structure is reported here, Fig 1. The molecule contains three essentially planar rings and the dihedral angles between the pyrazole ring (C1—C3, N2, N3) and the ring planes of the (C5—C7) and (C13—C17) benzene rings are 88.4 (2)° and 65.8 (2)°, respectively.

Related literature top

For the insecticidal properties of similar compounds, see: Philippe (1997, 2000). For a related structure, see: Zhong et al. (2005).

Experimental top

The title compound was prepared by literature methods (Zhong et al., 2005, Philippe, 2000). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol-acetone (2:1) solution of (I) (m.p. 435–437 K).

Refinement top

All H atoms were initially located in a difference Fourier map but were eventually placed in their geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2eq(C) and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms. The low Ueq of C11 as compared to its neighbours may be attributed to the high displacement parameters for atoms F1, F2 and F3, indicating either large thermal motion or rotational disorder of the trifluoromethyl group. However, attempts to represent the CF3 group using a disorder model were unsuccessful.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme and displacement ellipsoids at the 30% probability level.
4-Bromo-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-5-(4- methoxybenzylideneamino)-1H-pyrazole-3-carbonitrile top
Crystal data top
C19H10BrCl2F3N4OF(000) = 1024
Mr = 518.12Dx = 1.669 Mg m3
Monoclinic, P21/cMelting point = 435–437 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.215 (7) ÅCell parameters from 3780 reflections
b = 13.407 (9) Åθ = 2.6–24.2°
c = 15.108 (11) ŵ = 2.30 mm1
β = 94.634 (13)°T = 293 K
V = 2062 (2) Å3Block, colorless
Z = 40.28 × 0.25 × 0.23 mm
Data collection top
Bruker P4 CCD
diffractometer
4681 independent reflections
Radiation source: fine-focus sealed tube4061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1310
Tmin = 0.568, Tmax = 0.618k = 1717
15375 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1058P)2 + 1.2139P]
where P = (Fo2 + 2Fc2)/3
4681 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
C19H10BrCl2F3N4OV = 2062 (2) Å3
Mr = 518.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.215 (7) ŵ = 2.30 mm1
b = 13.407 (9) ÅT = 293 K
c = 15.108 (11) Å0.28 × 0.25 × 0.23 mm
β = 94.634 (13)°
Data collection top
Bruker P4 CCD
diffractometer
4681 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4061 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.618Rint = 0.028
15375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.87 e Å3
4681 reflectionsΔρmin = 1.22 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on All data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47949 (4)0.47599 (2)0.18806 (3)0.06204 (17)
Cl10.47167 (9)0.15617 (7)0.07867 (6)0.0635 (3)
Cl20.21780 (9)0.09133 (6)0.21206 (5)0.0598 (2)
O10.1317 (3)0.5592 (2)0.2291 (2)0.0705 (7)
N10.7437 (3)0.2820 (3)0.3107 (3)0.0722 (9)
N20.5089 (2)0.17560 (18)0.16494 (16)0.0440 (5)
N30.4063 (2)0.19538 (16)0.10558 (15)0.0401 (5)
N40.2718 (2)0.32184 (17)0.03993 (16)0.0440 (5)
C10.5457 (3)0.2656 (2)0.19544 (18)0.0426 (6)
C20.4669 (3)0.34164 (19)0.1561 (2)0.0431 (6)
C30.3773 (3)0.29447 (18)0.09722 (18)0.0393 (5)
C40.6555 (3)0.2745 (2)0.2597 (2)0.0510 (7)
C50.3380 (3)0.11449 (18)0.06234 (17)0.0372 (5)
C60.2496 (3)0.0587 (2)0.10637 (18)0.0404 (5)
C70.1868 (3)0.02304 (19)0.0660 (2)0.0455 (6)
H70.12750.06030.09590.055*
C80.2134 (3)0.0482 (2)0.0186 (2)0.0444 (6)
C90.2998 (3)0.0065 (2)0.0649 (2)0.0467 (6)
H90.31610.01100.12250.056*
C100.3616 (3)0.0880 (2)0.02374 (18)0.0412 (5)
C110.1513 (4)0.1404 (2)0.0601 (3)0.0606 (8)
C120.2714 (3)0.4090 (2)0.0053 (2)0.0468 (6)
H120.34330.45030.01940.056*
C130.1648 (3)0.4469 (2)0.05455 (19)0.0423 (6)
C140.1740 (3)0.5440 (2)0.0862 (2)0.0499 (7)
H140.24730.58230.06820.060*
C150.0759 (3)0.5846 (2)0.1438 (2)0.0485 (6)
H150.08260.64990.16370.058*
C160.0316 (3)0.5275 (2)0.1712 (2)0.0474 (6)
C170.0425 (3)0.4296 (3)0.1403 (2)0.0556 (7)
H170.11570.39130.15860.067*
C180.0549 (3)0.3903 (2)0.0829 (2)0.0499 (7)
H180.04760.32520.06270.060*
C190.1250 (5)0.6581 (3)0.2612 (4)0.0878 (15)
H19C0.20050.67140.30150.132*
H19B0.04670.66600.29160.132*
H19A0.12330.70390.21230.132*
F10.2269 (3)0.21908 (16)0.0449 (2)0.0972 (10)
F20.0391 (3)0.1633 (2)0.0287 (3)0.1064 (11)
F30.1310 (4)0.1354 (3)0.1460 (2)0.1269 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0722 (3)0.0340 (2)0.0776 (3)0.00455 (12)0.00746 (19)0.01343 (13)
Cl10.0740 (5)0.0690 (5)0.0497 (4)0.0276 (4)0.0184 (4)0.0037 (3)
Cl20.0782 (5)0.0583 (5)0.0453 (4)0.0063 (4)0.0197 (4)0.0037 (3)
O10.0646 (15)0.0602 (15)0.0822 (18)0.0061 (12)0.0225 (13)0.0004 (13)
N10.0669 (19)0.0670 (19)0.079 (2)0.0077 (15)0.0188 (17)0.0201 (16)
N20.0514 (13)0.0380 (12)0.0416 (11)0.0037 (10)0.0028 (10)0.0017 (9)
N30.0520 (12)0.0308 (10)0.0366 (10)0.0008 (9)0.0025 (9)0.0019 (8)
N40.0547 (13)0.0327 (11)0.0434 (12)0.0007 (9)0.0037 (10)0.0006 (9)
C10.0483 (14)0.0377 (13)0.0412 (13)0.0013 (10)0.0008 (11)0.0060 (10)
C20.0517 (15)0.0309 (12)0.0460 (14)0.0012 (10)0.0002 (11)0.0049 (10)
C30.0478 (13)0.0294 (11)0.0407 (13)0.0014 (10)0.0045 (10)0.0017 (9)
C40.0555 (17)0.0464 (15)0.0501 (16)0.0048 (12)0.0012 (13)0.0126 (12)
C50.0458 (13)0.0271 (11)0.0381 (12)0.0005 (9)0.0002 (10)0.0006 (9)
C60.0481 (14)0.0325 (12)0.0410 (13)0.0050 (10)0.0052 (11)0.0046 (10)
C70.0440 (14)0.0331 (13)0.0596 (17)0.0016 (10)0.0057 (12)0.0084 (11)
C80.0461 (14)0.0305 (12)0.0551 (16)0.0028 (10)0.0045 (12)0.0017 (11)
C90.0571 (16)0.0409 (13)0.0419 (14)0.0053 (12)0.0019 (12)0.0070 (11)
C100.0477 (14)0.0372 (13)0.0392 (13)0.0059 (10)0.0053 (10)0.0023 (10)
C110.0627 (19)0.0413 (16)0.075 (2)0.0116 (14)0.0131 (16)0.0049 (15)
C120.0539 (16)0.0358 (13)0.0498 (15)0.0028 (11)0.0012 (12)0.0000 (11)
C130.0527 (15)0.0331 (12)0.0407 (13)0.0004 (11)0.0027 (11)0.0002 (10)
C140.0570 (17)0.0344 (13)0.0567 (17)0.0059 (12)0.0056 (13)0.0023 (12)
C150.0604 (17)0.0320 (12)0.0522 (16)0.0032 (11)0.0007 (13)0.0019 (11)
C160.0513 (16)0.0440 (16)0.0461 (15)0.0069 (11)0.0005 (12)0.0038 (11)
C170.0546 (17)0.0481 (17)0.0628 (19)0.0122 (13)0.0031 (14)0.0011 (14)
C180.0614 (17)0.0363 (13)0.0522 (16)0.0082 (12)0.0061 (13)0.0024 (11)
C190.091 (3)0.059 (2)0.106 (4)0.020 (2)0.035 (3)0.006 (2)
F10.0977 (18)0.0389 (11)0.150 (3)0.0004 (11)0.0223 (18)0.0259 (14)
F20.0762 (16)0.0812 (18)0.164 (3)0.0395 (14)0.0210 (18)0.0324 (19)
F30.198 (4)0.095 (2)0.0784 (18)0.074 (2)0.044 (2)0.0037 (16)
Geometric parameters (Å, º) top
Br1—C21.867 (3)C8—C111.503 (4)
Cl1—C101.714 (3)C9—C101.384 (4)
Cl2—C61.712 (3)C9—H90.9300
O1—C161.359 (4)C11—F31.299 (5)
O1—C191.416 (5)C11—F21.311 (5)
N1—C41.142 (5)C11—F11.317 (4)
N2—C11.334 (4)C12—C131.450 (4)
N2—N31.349 (3)C12—H120.9300
N3—C31.365 (3)C13—C181.393 (4)
N3—C51.420 (3)C13—C141.393 (4)
N4—C121.280 (4)C14—C151.385 (4)
N4—C31.376 (4)C14—H140.9300
C1—C21.402 (4)C15—C161.374 (5)
C1—C41.428 (4)C15—H150.9300
C2—C31.377 (4)C16—C171.401 (5)
C5—C61.383 (4)C17—C181.370 (5)
C5—C101.388 (4)C17—H170.9300
C6—C71.386 (4)C18—H180.9300
C7—C81.371 (5)C19—H19C0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.380 (4)C19—H19A0.9600
C16—O1—C19117.3 (3)F3—C11—F2107.5 (3)
C1—N2—N3103.5 (2)F3—C11—F1105.0 (4)
N2—N3—C3113.8 (2)F2—C11—F1105.5 (3)
N2—N3—C5118.8 (2)F3—C11—C8113.7 (3)
C3—N3—C5127.3 (2)F2—C11—C8113.2 (3)
C12—N4—C3118.5 (3)F1—C11—C8111.4 (3)
N2—C1—C2112.0 (2)N4—C12—C13123.5 (3)
N2—C1—C4119.7 (3)N4—C12—H12118.3
C2—C1—C4128.3 (3)C13—C12—H12118.3
C3—C2—C1105.6 (2)C18—C13—C14118.6 (3)
C3—C2—Br1129.7 (2)C18—C13—C12123.2 (3)
C1—C2—Br1124.6 (2)C14—C13—C12118.2 (3)
N3—C3—N4118.1 (2)C15—C14—C13121.1 (3)
N3—C3—C2105.0 (2)C15—C14—H14119.4
N4—C3—C2136.8 (2)C13—C14—H14119.4
N1—C4—C1179.6 (5)C16—C15—C14119.4 (3)
C6—C5—C10118.8 (2)C16—C15—H15120.3
C6—C5—N3120.5 (2)C14—C15—H15120.3
C10—C5—N3120.7 (2)O1—C16—C15124.1 (3)
C5—C6—C7120.8 (3)O1—C16—C17115.5 (3)
C5—C6—Cl2119.4 (2)C15—C16—C17120.3 (3)
C7—C6—Cl2119.8 (2)C18—C17—C16119.8 (3)
C8—C7—C6119.1 (3)C18—C17—H17120.1
C8—C7—H7120.5C16—C17—H17120.1
C6—C7—H7120.5C17—C18—C13120.8 (3)
C7—C8—C9121.6 (3)C17—C18—H18119.6
C7—C8—C11118.9 (3)C13—C18—H18119.6
C9—C8—C11119.5 (3)O1—C19—H19C109.5
C8—C9—C10118.7 (3)O1—C19—H19B109.5
C8—C9—H9120.7H19C—C19—H19B109.5
C10—C9—H9120.7O1—C19—H19A109.5
C9—C10—C5121.0 (2)H19C—C19—H19A109.5
C9—C10—Cl1119.8 (2)H19B—C19—H19A109.5
C5—C10—Cl1119.2 (2)

Experimental details

Crystal data
Chemical formulaC19H10BrCl2F3N4O
Mr518.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.215 (7), 13.407 (9), 15.108 (11)
β (°) 94.634 (13)
V3)2062 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker P4 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.568, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
15375, 4681, 4061
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.160, 1.02
No. of reflections4681
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 1.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of Fujian Province (No. B0610033).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPhilippe, J. (1997). US Patent No. 6 001 384.  Google Scholar
First citationPhilippe, J. (2000). US Patent No. 6 096 329.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, P., Yang, Z. & Shi, Q. (2005). Acta Cryst. E61, o786–o787.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds