metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ammonium di­aqua­bis­(malonato-κ2O,O′)cobaltate(II) dihydrate

aDepartment of Chemistry, Huainan Normal College, 232001 Huainan, Anhui, People's Republic of China
*Correspondence e-mail: xuhyun1970@sohu.com

(Received 18 January 2008; accepted 16 February 2008; online 22 February 2008)

The title complex, (NH4)2[Co(C3H3O4)2(H2O)2]·2H2O, features a six-coordinate Co atom located on a center of symmetry. The octa­hedral O6 coordination geometry is defined by two bidentate malonate ligands and two water mol­ecules, with the latter in a trans configuration. The mol­ecules are linked through O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional supra­molecular network.

Related literature

For related literature, see: Delgado et al. (2006[Delgado, F. S., Ruiz-Përez, C., Sanchiz, J., Lloret, F. & Julve, M. (2006). CrystEngComm, 8, 530-544.]); Saadeh et al. (1993[Saadeh, S. M., Trojan, K. L., Kampf, J. W., Hatfield, W. E. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3034-3040.]); Wang et al. (2005[Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907-m1908.]); Wuest (2005[Wuest, J. D. (2005). Chem. Commun. pp. 5830-5837.]); Yolanda et al. (2002[Yolanda, R. M., Joaquín, S., Catalina, R. P., Francesc, L. & Miguel, J. (2002). CrystEngComm, 4, 631-637.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Co(C3H3O4)2(H2O)2]·2H2O

  • Mr = 371.17

  • Triclinic, [P \overline 1]

  • a = 6.950 (2) Å

  • b = 7.075 (2) Å

  • c = 7.433 (2) Å

  • α = 89.032 (5)°

  • β = 73.076 (5)°

  • γ = 88.062 (5)°

  • V = 349.45 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 298 (2) K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.801

  • 1817 measured reflections

  • 1285 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.09

  • 1285 reflections

  • 97 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.85 1.90 2.723 (3) 164
O5—H5B⋯O4i 0.85 1.82 2.663 (3) 172
O6—H6A⋯O1ii 0.84 2.57 3.336 (3) 153
O6—H6A⋯O2ii 0.84 1.95 2.704 (3) 149
O6—H6B⋯O3iii 0.85 2.57 3.063 (3) 118
O6—H6B⋯O5iii 0.85 2.17 2.879 (3) 141
N1—H1A⋯O6iv 0.85 2.16 2.950 (3) 155
N1—H1B⋯O3v 0.85 1.97 2.805 (3) 165
N1—H1C⋯O4vi 0.85 2.33 2.988 (3) 135
N1—H1D⋯O2 0.85 2.06 2.857 (4) 155
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x, -y+1, -z+1; (vi) x, y, z-1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the design of supramolecular complexes, a well known and effective strategy is the matching of suitable hydrogen bond donors and acceptors (Wuest, 2005). Metal aqua-ions may act as excellent, readily available hydrogen bond donors with limited acceptor properties. Several novel complexes with metal aqua-ions have been reported (Delgado et al., 2006; Saadeh et al., 1993; Wang et al., 2005; Yolanda et al., 2002.) We report here the crystal structure of the title complex, (I), [NH4]2[Co(C3H3O4)2(OH2)2].2H2O, Fig. 1, in which the asymmetric comprises half a complex dianion, [Co(C3H3O4)2(OH2)2], situated on a center of inversion, an ammonium cation and a water molecule of crystallization.

The coordination polyhedron of the Co atom is that of an elongated octahedron defined by an O6 donor set. Four carboxylate O atoms, derived from two bidentate malonate ligands, build the equatorial plane, whereas two water molecules occupy the axial sites. As expected the Co—Oaxial distance [2.1020 (19) Å] is longer than the Co—Oequatorial distances [2.0502 (18) and 2.0592 (17) Å]. The bond angles around the cobalt atom are close to that expected for an ideal octahedron. The molecules are linked through O—H···O and N—H···O hydrogen-bonding interactions and form a 3-D supramolecular network, Fig. 2 and Table 2.

Related literature top

For related literature, see: Delgado et al. (2006); Saadeh et al. (1993); Wang et al. (2005); Wuest (2005); Yolanda et al. (2002).

Experimental top

Crystals of (I) were obtained by a diffusion method. In one arm of an U-tube was placed [NH4]2[C3H2O4] (30 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml) and in the other [Co(ClO4)2].6H2O (37 mg, 0.1 mmol) in water/ethanol (1:1; 10 ml). The purple crystals were collected by filtration, washed with distilled water, followed by ethanol and dried under reduced pressure for 2 h. Analysis found: C 19.24, H 5.27, N 7.32; C6H20CoN2O12 requires: C 19.42, H 5.43, N 7.55.

Refinement top

All H atoms were placed geometrically with C—H, N—H and O—H distances of 0.97, 0.85 and 0.85 Å, respectively, and with Uiso(H) = 1.2Ueq(C, N, O). Hydroxyl-H atoms were allowed to rotate to best fit the experimental electron density.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) expanded to show the coordination geometry of the Co atom which sits on a center of inversion; the unlabelled atoms are related by the symmetry operation -x, 2 - y, 1 - z. The figure shows 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The 3-D superamolecular structure of (I). Hydrogen bond interactions are shown as dashed lines.
Diammonium diaquabis(malonato-κ2O,O')cobalt(II) dihydrate top
Crystal data top
(NH4)2[Co(C3H3O4)2(H2O)2]·2H2OZ = 1
Mr = 371.17F(000) = 193
Triclinic, P1Dx = 1.764 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.950 (2) ÅCell parameters from 1285 reflections
b = 7.075 (2) Åθ = 2.9–25.5°
c = 7.433 (2) ŵ = 1.29 mm1
α = 89.032 (5)°T = 298 K
β = 73.076 (5)°Block, purple
γ = 88.062 (5)°0.24 × 0.21 × 0.18 mm
V = 349.45 (17) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1285 independent reflections
Radiation source: fine-focus sealed tube1246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.747, Tmax = 0.801k = 78
1817 measured reflectionsl = 68
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.0816P]
where P = (Fo2 + 2Fc2)/3
1285 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = 0.76 e Å3
Crystal data top
(NH4)2[Co(C3H3O4)2(H2O)2]·2H2Oγ = 88.062 (5)°
Mr = 371.17V = 349.45 (17) Å3
Triclinic, P1Z = 1
a = 6.950 (2) ÅMo Kα radiation
b = 7.075 (2) ŵ = 1.29 mm1
c = 7.433 (2) ÅT = 298 K
α = 89.032 (5)°0.24 × 0.21 × 0.18 mm
β = 73.076 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1246 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.801Rint = 0.057
1817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
1285 reflectionsΔρmin = 0.76 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00001.00000.50000.0246 (2)
C10.2349 (4)0.7294 (4)0.2083 (4)0.0302 (6)
C20.3182 (4)0.6385 (4)0.3572 (4)0.0371 (7)
H2A0.36960.51280.31430.045*
H2B0.43200.71080.36380.045*
C30.1802 (4)0.6198 (3)0.5553 (3)0.0265 (5)
N10.1772 (4)0.2806 (4)0.0011 (3)0.0438 (6)
H1B0.08250.27150.10310.053*
H1A0.25580.18450.03090.053*
H1C0.10820.31230.07260.053*
H1D0.24700.37540.00710.053*
O10.1213 (3)0.8738 (3)0.2439 (2)0.0322 (4)
O20.2920 (4)0.6563 (3)0.0484 (3)0.0501 (6)
O30.0789 (3)0.7649 (2)0.6328 (2)0.0315 (4)
O40.1752 (3)0.4670 (2)0.6380 (3)0.0371 (5)
O50.2733 (3)1.1242 (3)0.4906 (3)0.0347 (5)
H5A0.36941.11790.38930.042*
H5B0.25131.23740.52960.042*
O60.6141 (3)0.0563 (3)0.2034 (3)0.0391 (5)
H6B0.70110.00790.25210.047*
H6A0.67290.11330.10380.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0283 (3)0.0183 (3)0.0245 (3)0.00435 (19)0.0037 (2)0.00096 (19)
C10.0355 (14)0.0214 (13)0.0272 (13)0.0012 (11)0.0012 (11)0.0005 (10)
C20.0345 (15)0.0327 (15)0.0364 (15)0.0115 (12)0.0003 (12)0.0024 (12)
C30.0301 (13)0.0227 (13)0.0276 (13)0.0007 (10)0.0103 (11)0.0007 (10)
N10.0573 (17)0.0370 (14)0.0322 (13)0.0090 (12)0.0063 (12)0.0035 (10)
O10.0394 (11)0.0270 (10)0.0266 (9)0.0088 (8)0.0047 (8)0.0021 (7)
O20.0817 (18)0.0295 (11)0.0280 (11)0.0148 (11)0.0001 (11)0.0061 (8)
O30.0435 (11)0.0218 (9)0.0250 (9)0.0067 (8)0.0040 (8)0.0008 (7)
O40.0534 (13)0.0203 (10)0.0353 (11)0.0045 (9)0.0099 (9)0.0013 (8)
O50.0310 (10)0.0241 (10)0.0430 (11)0.0009 (8)0.0012 (8)0.0054 (8)
O60.0400 (11)0.0414 (12)0.0322 (11)0.0001 (9)0.0054 (9)0.0059 (9)
Geometric parameters (Å, º) top
Co1—O12.0502 (18)C2—H2B0.9699
Co1—O1i2.0502 (18)C3—O41.231 (3)
Co1—O3i2.0592 (17)C3—O31.272 (3)
Co1—O32.0592 (17)N1—H1B0.8500
Co1—O5i2.1020 (19)N1—H1A0.8500
Co1—O52.1020 (19)N1—H1C0.8500
C1—O21.252 (3)N1—H1D0.8500
C1—O11.253 (3)O5—H5A0.8498
C1—C21.516 (4)O5—H5B0.8498
C2—C31.512 (4)O6—H6B0.8500
C2—H2A0.9699O6—H6A0.8378
O1—Co1—O1i180C1—C2—H2A107.8
O1—Co1—O3i89.76 (7)C3—C2—H2B107.3
O1i—Co1—O3i90.24 (7)C1—C2—H2B107.8
O1—Co1—O390.24 (7)H2A—C2—H2B107.1
O1i—Co1—O389.76 (7)O4—C3—O3122.4 (2)
O3i—Co1—O3180O4—C3—C2119.0 (2)
O1—Co1—O5i87.61 (8)O3—C3—C2118.6 (2)
O1i—Co1—O5i92.39 (8)H1B—N1—H1A116.6
O3i—Co1—O5i90.37 (8)H1B—N1—H1C99.2
O3—Co1—O5i89.63 (8)H1A—N1—H1C116.0
O1—Co1—O592.39 (8)H1B—N1—H1D109.3
O1i—Co1—O587.61 (8)H1A—N1—H1D108.6
O3i—Co1—O589.63 (8)H1C—N1—H1D106.4
O3—Co1—O590.37 (8)C1—O1—Co1127.52 (17)
O5i—Co1—O5180C3—O3—Co1127.00 (16)
O2—C1—O1122.7 (3)Co1—O5—H5A118.7
O2—C1—C2116.3 (2)Co1—O5—H5B109.9
O1—C1—C2121.0 (2)H5A—O5—H5B111.0
C3—C2—C1118.6 (2)H6B—O6—H6A109.3
C3—C2—H2A107.7
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6ii0.851.902.723 (3)164
O5—H5B···O4ii0.851.822.663 (3)172
O6—H6A···O1iii0.842.573.336 (3)153
O6—H6A···O2iii0.841.952.704 (3)149
O6—H6B···O3iv0.852.573.063 (3)118
O6—H6B···O5iv0.852.172.879 (3)141
N1—H1A···O6v0.852.162.950 (3)155
N1—H1B···O3vi0.851.972.805 (3)165
N1—H1C···O4vii0.852.332.988 (3)135
N1—H1D···O20.852.062.857 (4)155
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z+1; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula(NH4)2[Co(C3H3O4)2(H2O)2]·2H2O
Mr371.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.950 (2), 7.075 (2), 7.433 (2)
α, β, γ (°)89.032 (5), 73.076 (5), 88.062 (5)
V3)349.45 (17)
Z1
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
1817, 1285, 1246
Rint0.057
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.09
No. of reflections1285
No. of parameters97
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.76

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.851.902.723 (3)164
O5—H5B···O4i0.851.822.663 (3)172
O6—H6A···O1ii0.842.573.336 (3)153
O6—H6A···O2ii0.841.952.704 (3)149
O6—H6B···O3iii0.852.573.063 (3)118
O6—H6B···O5iii0.852.172.879 (3)141
N1—H1A···O6iv0.852.162.950 (3)155
N1—H1B···O3v0.851.972.805 (3)165
N1—H1C···O4vi0.852.332.988 (3)135
N1—H1D···O20.852.062.857 (4)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y, z1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Anhui Province (No. KJ2007B093) for financial support.

References

First citationDelgado, F. S., Ruiz-Përez, C., Sanchiz, J., Lloret, F. & Julve, M. (2006). CrystEngComm, 8, 530–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaadeh, S. M., Trojan, K. L., Kampf, J. W., Hatfield, W. E. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3034–3040.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWuest, J. D. (2005). Chem. Commun. pp. 5830–5837.  Web of Science CrossRef Google Scholar
First citationYolanda, R. M., Joaquín, S., Catalina, R. P., Francesc, L. & Miguel, J. (2002). CrystEngComm, 4, 631–637.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds