metal-organic compounds
Diammonium diaquabis(malonato-κ2O,O′)cobaltate(II) dihydrate
aDepartment of Chemistry, Huainan Normal College, 232001 Huainan, Anhui, People's Republic of China
*Correspondence e-mail: xuhyun1970@sohu.com
The title complex, (NH4)2[Co(C3H3O4)2(H2O)2]·2H2O, features a six-coordinate Co atom located on a center of symmetry. The octahedral O6 coordination geometry is defined by two bidentate malonate ligands and two water molecules, with the latter in a trans configuration. The molecules are linked through O—H⋯O and N—H⋯O hydrogen-bonding interactions, forming a three-dimensional supramolecular network.
Related literature
For related literature, see: Delgado et al. (2006); Saadeh et al. (1993); Wang et al. (2005); Wuest (2005); Yolanda et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808004625/tk2245sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004625/tk2245Isup2.hkl
Crystals of (I) were obtained by a diffusion method. In one arm of an U-tube was placed [NH4]2[C3H2O4] (30 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml) and in the other [Co(ClO4)2].6H2O (37 mg, 0.1 mmol) in water/ethanol (1:1; 10 ml). The purple crystals were collected by filtration, washed with distilled water, followed by ethanol and dried under reduced pressure for 2 h. Analysis found: C 19.24, H 5.27, N 7.32; C6H20CoN2O12 requires: C 19.42, H 5.43, N 7.55.
All H atoms were placed geometrically with C—H, N—H and O—H distances of 0.97, 0.85 and 0.85 Å, respectively, and with Uiso(H) = 1.2Ueq(C, N, O). Hydroxyl-H atoms were allowed to rotate to best fit the experimental electron density.
Data collection: SMART (Siemens, 1996); cell
SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of (I) expanded to show the coordination geometry of the Co atom which sits on a center of inversion; the unlabelled atoms are related by the symmetry operation -x, 2 - y, 1 - z. The figure shows 30% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. The 3-D superamolecular structure of (I). Hydrogen bond interactions are shown as dashed lines. |
(NH4)2[Co(C3H3O4)2(H2O)2]·2H2O | Z = 1 |
Mr = 371.17 | F(000) = 193 |
Triclinic, P1 | Dx = 1.764 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.950 (2) Å | Cell parameters from 1285 reflections |
b = 7.075 (2) Å | θ = 2.9–25.5° |
c = 7.433 (2) Å | µ = 1.29 mm−1 |
α = 89.032 (5)° | T = 298 K |
β = 73.076 (5)° | Block, purple |
γ = 88.062 (5)° | 0.24 × 0.21 × 0.18 mm |
V = 349.45 (17) Å3 |
Bruker SMART APEX CCD diffractometer | 1285 independent reflections |
Radiation source: fine-focus sealed tube | 1246 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.747, Tmax = 0.801 | k = −7→8 |
1817 measured reflections | l = −6→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.0816P] where P = (Fo2 + 2Fc2)/3 |
1285 reflections | (Δ/σ)max < 0.001 |
97 parameters | Δρmax = 0.39 e Å−3 |
4 restraints | Δρmin = −0.76 e Å−3 |
(NH4)2[Co(C3H3O4)2(H2O)2]·2H2O | γ = 88.062 (5)° |
Mr = 371.17 | V = 349.45 (17) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.950 (2) Å | Mo Kα radiation |
b = 7.075 (2) Å | µ = 1.29 mm−1 |
c = 7.433 (2) Å | T = 298 K |
α = 89.032 (5)° | 0.24 × 0.21 × 0.18 mm |
β = 73.076 (5)° |
Bruker SMART APEX CCD diffractometer | 1285 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1246 reflections with I > 2σ(I) |
Tmin = 0.747, Tmax = 0.801 | Rint = 0.057 |
1817 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 4 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.39 e Å−3 |
1285 reflections | Δρmin = −0.76 e Å−3 |
97 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 1.0000 | 0.5000 | 0.0246 (2) | |
C1 | 0.2349 (4) | 0.7294 (4) | 0.2083 (4) | 0.0302 (6) | |
C2 | 0.3182 (4) | 0.6385 (4) | 0.3572 (4) | 0.0371 (7) | |
H2A | 0.3696 | 0.5128 | 0.3143 | 0.045* | |
H2B | 0.4320 | 0.7108 | 0.3638 | 0.045* | |
C3 | 0.1802 (4) | 0.6198 (3) | 0.5553 (3) | 0.0265 (5) | |
N1 | 0.1772 (4) | 0.2806 (4) | 0.0011 (3) | 0.0438 (6) | |
H1B | 0.0825 | 0.2715 | 0.1031 | 0.053* | |
H1A | 0.2558 | 0.1845 | −0.0309 | 0.053* | |
H1C | 0.1082 | 0.3123 | −0.0726 | 0.053* | |
H1D | 0.2470 | 0.3754 | 0.0071 | 0.053* | |
O1 | 0.1213 (3) | 0.8738 (3) | 0.2439 (2) | 0.0322 (4) | |
O2 | 0.2920 (4) | 0.6563 (3) | 0.0484 (3) | 0.0501 (6) | |
O3 | 0.0789 (3) | 0.7649 (2) | 0.6328 (2) | 0.0315 (4) | |
O4 | 0.1752 (3) | 0.4670 (2) | 0.6380 (3) | 0.0371 (5) | |
O5 | 0.2733 (3) | 1.1242 (3) | 0.4906 (3) | 0.0347 (5) | |
H5A | 0.3694 | 1.1179 | 0.3893 | 0.042* | |
H5B | 0.2513 | 1.2374 | 0.5296 | 0.042* | |
O6 | 0.6141 (3) | 0.0563 (3) | 0.2034 (3) | 0.0391 (5) | |
H6B | 0.7011 | 0.0079 | 0.2521 | 0.047* | |
H6A | 0.6729 | 0.1133 | 0.1038 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0283 (3) | 0.0183 (3) | 0.0245 (3) | 0.00435 (19) | −0.0037 (2) | −0.00096 (19) |
C1 | 0.0355 (14) | 0.0214 (13) | 0.0272 (13) | −0.0012 (11) | 0.0012 (11) | −0.0005 (10) |
C2 | 0.0345 (15) | 0.0327 (15) | 0.0364 (15) | 0.0115 (12) | 0.0003 (12) | 0.0024 (12) |
C3 | 0.0301 (13) | 0.0227 (13) | 0.0276 (13) | 0.0007 (10) | −0.0103 (11) | −0.0007 (10) |
N1 | 0.0573 (17) | 0.0370 (14) | 0.0322 (13) | 0.0090 (12) | −0.0063 (12) | −0.0035 (10) |
O1 | 0.0394 (11) | 0.0270 (10) | 0.0266 (9) | 0.0088 (8) | −0.0047 (8) | −0.0021 (7) |
O2 | 0.0817 (18) | 0.0295 (11) | 0.0280 (11) | 0.0148 (11) | −0.0001 (11) | −0.0061 (8) |
O3 | 0.0435 (11) | 0.0218 (9) | 0.0250 (9) | 0.0067 (8) | −0.0040 (8) | 0.0008 (7) |
O4 | 0.0534 (13) | 0.0203 (10) | 0.0353 (11) | 0.0045 (9) | −0.0099 (9) | 0.0013 (8) |
O5 | 0.0310 (10) | 0.0241 (10) | 0.0430 (11) | 0.0009 (8) | −0.0012 (8) | −0.0054 (8) |
O6 | 0.0400 (11) | 0.0414 (12) | 0.0322 (11) | −0.0001 (9) | −0.0054 (9) | 0.0059 (9) |
Co1—O1 | 2.0502 (18) | C2—H2B | 0.9699 |
Co1—O1i | 2.0502 (18) | C3—O4 | 1.231 (3) |
Co1—O3i | 2.0592 (17) | C3—O3 | 1.272 (3) |
Co1—O3 | 2.0592 (17) | N1—H1B | 0.8500 |
Co1—O5i | 2.1020 (19) | N1—H1A | 0.8500 |
Co1—O5 | 2.1020 (19) | N1—H1C | 0.8500 |
C1—O2 | 1.252 (3) | N1—H1D | 0.8500 |
C1—O1 | 1.253 (3) | O5—H5A | 0.8498 |
C1—C2 | 1.516 (4) | O5—H5B | 0.8498 |
C2—C3 | 1.512 (4) | O6—H6B | 0.8500 |
C2—H2A | 0.9699 | O6—H6A | 0.8378 |
O1—Co1—O1i | 180 | C1—C2—H2A | 107.8 |
O1—Co1—O3i | 89.76 (7) | C3—C2—H2B | 107.3 |
O1i—Co1—O3i | 90.24 (7) | C1—C2—H2B | 107.8 |
O1—Co1—O3 | 90.24 (7) | H2A—C2—H2B | 107.1 |
O1i—Co1—O3 | 89.76 (7) | O4—C3—O3 | 122.4 (2) |
O3i—Co1—O3 | 180 | O4—C3—C2 | 119.0 (2) |
O1—Co1—O5i | 87.61 (8) | O3—C3—C2 | 118.6 (2) |
O1i—Co1—O5i | 92.39 (8) | H1B—N1—H1A | 116.6 |
O3i—Co1—O5i | 90.37 (8) | H1B—N1—H1C | 99.2 |
O3—Co1—O5i | 89.63 (8) | H1A—N1—H1C | 116.0 |
O1—Co1—O5 | 92.39 (8) | H1B—N1—H1D | 109.3 |
O1i—Co1—O5 | 87.61 (8) | H1A—N1—H1D | 108.6 |
O3i—Co1—O5 | 89.63 (8) | H1C—N1—H1D | 106.4 |
O3—Co1—O5 | 90.37 (8) | C1—O1—Co1 | 127.52 (17) |
O5i—Co1—O5 | 180 | C3—O3—Co1 | 127.00 (16) |
O2—C1—O1 | 122.7 (3) | Co1—O5—H5A | 118.7 |
O2—C1—C2 | 116.3 (2) | Co1—O5—H5B | 109.9 |
O1—C1—C2 | 121.0 (2) | H5A—O5—H5B | 111.0 |
C3—C2—C1 | 118.6 (2) | H6B—O6—H6A | 109.3 |
C3—C2—H2A | 107.7 |
Symmetry code: (i) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O6ii | 0.85 | 1.90 | 2.723 (3) | 164 |
O5—H5B···O4ii | 0.85 | 1.82 | 2.663 (3) | 172 |
O6—H6A···O1iii | 0.84 | 2.57 | 3.336 (3) | 153 |
O6—H6A···O2iii | 0.84 | 1.95 | 2.704 (3) | 149 |
O6—H6B···O3iv | 0.85 | 2.57 | 3.063 (3) | 118 |
O6—H6B···O5iv | 0.85 | 2.17 | 2.879 (3) | 141 |
N1—H1A···O6v | 0.85 | 2.16 | 2.950 (3) | 155 |
N1—H1B···O3vi | 0.85 | 1.97 | 2.805 (3) | 165 |
N1—H1C···O4vii | 0.85 | 2.33 | 2.988 (3) | 135 |
N1—H1D···O2 | 0.85 | 2.06 | 2.857 (4) | 155 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z; (vi) −x, −y+1, −z+1; (vii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | (NH4)2[Co(C3H3O4)2(H2O)2]·2H2O |
Mr | 371.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.950 (2), 7.075 (2), 7.433 (2) |
α, β, γ (°) | 89.032 (5), 73.076 (5), 88.062 (5) |
V (Å3) | 349.45 (17) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.24 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.747, 0.801 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1817, 1285, 1246 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.107, 1.09 |
No. of reflections | 1285 |
No. of parameters | 97 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.76 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O6i | 0.85 | 1.90 | 2.723 (3) | 164 |
O5—H5B···O4i | 0.85 | 1.82 | 2.663 (3) | 172 |
O6—H6A···O1ii | 0.84 | 2.57 | 3.336 (3) | 153 |
O6—H6A···O2ii | 0.84 | 1.95 | 2.704 (3) | 149 |
O6—H6B···O3iii | 0.85 | 2.57 | 3.063 (3) | 118 |
O6—H6B···O5iii | 0.85 | 2.17 | 2.879 (3) | 141 |
N1—H1A···O6iv | 0.85 | 2.16 | 2.950 (3) | 155 |
N1—H1B···O3v | 0.85 | 1.97 | 2.805 (3) | 165 |
N1—H1C···O4vi | 0.85 | 2.33 | 2.988 (3) | 135 |
N1—H1D···O2 | 0.85 | 2.06 | 2.857 (4) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z; (v) −x, −y+1, −z+1; (vi) x, y, z−1. |
Acknowledgements
The authors thank the Natural Science Foundation of Anhui Province (No. KJ2007B093) for financial support.
References
Delgado, F. S., Ruiz-Përez, C., Sanchiz, J., Lloret, F. & Julve, M. (2006). CrystEngComm, 8, 530–544. Web of Science CSD CrossRef CAS Google Scholar
Saadeh, S. M., Trojan, K. L., Kampf, J. W., Hatfield, W. E. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3034–3040. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wuest, J. D. (2005). Chem. Commun. pp. 5830–5837. Web of Science CrossRef Google Scholar
Yolanda, R. M., Joaquín, S., Catalina, R. P., Francesc, L. & Miguel, J. (2002). CrystEngComm, 4, 631–637. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the design of supramolecular complexes, a well known and effective strategy is the matching of suitable hydrogen bond donors and acceptors (Wuest, 2005). Metal aqua-ions may act as excellent, readily available hydrogen bond donors with limited acceptor properties. Several novel complexes with metal aqua-ions have been reported (Delgado et al., 2006; Saadeh et al., 1993; Wang et al., 2005; Yolanda et al., 2002.) We report here the crystal structure of the title complex, (I), [NH4]2[Co(C3H3O4)2(OH2)2].2H2O, Fig. 1, in which the asymmetric comprises half a complex dianion, [Co(C3H3O4)2(OH2)2], situated on a center of inversion, an ammonium cation and a water molecule of crystallization.
The coordination polyhedron of the Co atom is that of an elongated octahedron defined by an O6 donor set. Four carboxylate O atoms, derived from two bidentate malonate ligands, build the equatorial plane, whereas two water molecules occupy the axial sites. As expected the Co—Oaxial distance [2.1020 (19) Å] is longer than the Co—Oequatorial distances [2.0502 (18) and 2.0592 (17) Å]. The bond angles around the cobalt atom are close to that expected for an ideal octahedron. The molecules are linked through O—H···O and N—H···O hydrogen-bonding interactions and form a 3-D supramolecular network, Fig. 2 and Table 2.