metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-pivalato-κ2O:O′)bis­­[(2-methyl­pyridine-κN)iron(II)](FeFe)

aDepartment of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark, and bInstitute of Chemistry, Academy of Sciences of Moldova, Academy Str. 3, Chisinau, MD-2028, Republic of Moldova
*Correspondence e-mail: jacobo@chem.au.dk

(Received 13 February 2008; accepted 22 February 2008; online 27 February 2008)

The asymmetric unit of the title compound, [Fe2(C5H9O2)4(C6H7N)2], contains one unique Fe-atom site located close to a centre of symmetry which generates the mol­ecular dimer. The two Fe atoms are bridged by four carboxyl­ate groups and are each coordinated by a mol­ecule of 2-picoline. Electron counting and the 18-electron rule suggest that a chemical single bond is likely to exist between the two Fe atoms, which are separated by a distance of 2.8576 (4) Å. This bond completes an approximately octa­hedral coordination environment around each Fe atom.

Related literature

For related literature, see: Celengil-Cetin et al. (2000[Celengil-Cetin, R., Staples, R. J. & Stavropoulos, P. (2000). Inorg. Chem. 39, 5838-5846.]); Weber (1980[Weber, G. (1980). Acta Cryst. B36, 3107-3109.]); Johnson (1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H9O2)4(C6H7N)2]

  • Mr = 702.44

  • Triclinic, [P \overline 1]

  • a = 9.5387 (8) Å

  • b = 10.5403 (9) Å

  • c = 10.5546 (9) Å

  • α = 64.138 (2)°

  • β = 83.600 (2)°

  • γ = 72.090 (2)°

  • V = 908.30 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 120 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: Gaussian (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.761, Tmax = 0.863

  • 8222 measured reflections

  • 4949 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.10

  • 4949 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O4i 2.0508 (11)
Fe1—O1 2.0571 (13)
Fe1—O3 2.0675 (13)
Fe1—O2i 2.0717 (11)
Fe1—N1 2.1284 (13)
Fe1—Fe1i 2.8576 (4)
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a systematic study of the reactions of iron powder with simple carboxylates and aromatic amines to prepare iron(II) carboxylates, the title compound, (1) (Fig. 1) resulted, under ambient reaction conditions. Both monomeric molecular complexes (Celengil-Cetin et al., 2000) and extended iron(II) carboxylates have previously been prepared (Weber, 1980) using similar methods.

In the present study, the iron atoms are only coordinated to five ligands each, with a total donation of 10 electrons. This gives a total of 16 electrons on both Fe, thus a Fe—Fe bond needs to be present to fill the outer orbitals on Fe. The relatively short Fe(1)—Fe(1) interaction distance (d(Fe(1)–Fe(1)) = 2.8576 (4) Å) is likely evidence for such iron-iron bond.

Related literature top

For related literature, see: Celengil-Cetin et al. (2000); Weber (1980); Johnson (1976).

Experimental top

Iron powder (1.0 g) was refluxed in a solution of 2-picoline (C6H7N, 10.0 ml), pivalic acid (4.0 g) and water (1.0 ml) for 5 h under an inert atmosphere. The obtained yellow solution was filtered while hot under an inert atmosphere and the filtrate afforded green crystals upon cooling slowly at room temperature.

Refinement top

The methyl hydrogen atoms were constrained to tetrahedral geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). The positions of each set of three of the H atoms of the methyl groups constrained to tetrahedral geometry were refined so as to optimize the overlap with the observed electron density (AFIX 137). The H atoms bonded to the aromatic C atoms were constrained to ride on their parent atom in a distance of 0.95 Å in an ideal geometry and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPdrawing (Johnson, 1976) of (1) showing the atomic labelling scheme. Hydrogen atoms are omitted for clarity. The thermal ellipsoids show 50% probability surfaces.
Tetrakis(µ-pivalato-κ2O:O')bis[(2-methylpyridine-κN)iron(II)] top
Crystal data top
[Fe2(C5H9O2)4(C6H7N)2]Z = 1
Mr = 702.44F(000) = 372
Triclinic, P1Dx = 1.284 Mg m3
a = 9.5387 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5403 (9) ÅCell parameters from 2580 reflections
c = 10.5546 (9) Åθ = 2.9–32.7°
α = 64.138 (2)°µ = 0.85 mm1
β = 83.600 (2)°T = 120 K
γ = 72.090 (2)°Prism, green
V = 908.30 (13) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4949 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 12.0 pixels mm-1θmax = 33.8°, θmin = 2.2°
ω scansh = 1112
Absorption correction: gaussian
(SADABS; Sheldrick, 2003)
k = 1316
Tmin = 0.762, Tmax = 0.863l = 1412
8222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0412P]
where P = (Fo2 + 2Fc2)/3
4949 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Fe2(C5H9O2)4(C6H7N)2]γ = 72.090 (2)°
Mr = 702.44V = 908.30 (13) Å3
Triclinic, P1Z = 1
a = 9.5387 (8) ÅMo Kα radiation
b = 10.5403 (9) ŵ = 0.85 mm1
c = 10.5546 (9) ÅT = 120 K
α = 64.138 (2)°0.30 × 0.25 × 0.20 mm
β = 83.600 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4949 independent reflections
Absorption correction: gaussian
(SADABS; Sheldrick, 2003)
4259 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.863Rint = 0.032
8222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.11Δρmax = 0.56 e Å3
4949 reflectionsΔρmin = 0.48 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.03369 (2)0.11318 (2)0.02000 (2)0.02183 (8)
O10.16294 (13)0.13551 (14)0.12201 (14)0.0380 (3)
O20.20582 (14)0.04754 (14)0.09692 (13)0.0355 (3)
O30.08500 (15)0.25206 (16)0.16687 (14)0.0443 (3)
O40.12814 (14)0.07109 (13)0.19692 (12)0.0360 (3)
C10.23705 (16)0.04856 (16)0.14308 (15)0.0246 (3)
C20.37218 (19)0.05517 (19)0.23535 (17)0.0327 (3)
C30.4232 (3)0.2015 (3)0.2491 (3)0.0555 (6)
H3A0.34660.20790.29870.083*
H3B0.44150.28360.15510.083*
H3C0.51420.20640.30230.083*
C40.3273 (4)0.0754 (3)0.3758 (2)0.1009 (14)
H4A0.29950.16650.36290.151*
H4B0.24320.06930.41610.151*
H4C0.41010.07530.43970.151*
C50.4987 (2)0.0447 (3)0.1668 (3)0.0671 (7)
H5A0.46590.04370.14910.101*
H5B0.58230.03890.230.101*
H5C0.52880.13210.07750.101*
C60.14310 (16)0.20469 (18)0.23159 (15)0.0271 (3)
C70.24543 (19)0.31837 (17)0.35736 (15)0.0303 (3)
C80.3883 (2)0.3772 (3)0.2947 (2)0.0602 (6)
H8A0.42660.29530.23160.09*
H8B0.36950.4270.24150.09*
H8C0.4610.44730.37060.09*
C90.1777 (4)0.4420 (3)0.4476 (2)0.0679 (8)
H9A0.24950.52090.52030.102*
H9B0.15010.4810.38810.102*
H9C0.08970.40360.49240.102*
C100.2741 (2)0.2478 (2)0.44773 (18)0.0409 (4)
H10A0.31930.16940.39040.061*
H10B0.34070.32270.5270.061*
H10C0.18060.20620.48370.061*
N10.12992 (14)0.26829 (14)0.02513 (14)0.0262 (3)
C1A0.12609 (18)0.30575 (18)0.13207 (18)0.0300 (3)
C1B0.1759 (2)0.4233 (2)0.1168 (2)0.0386 (4)
H1BA0.1710.44930.19320.046*
C1C0.2317 (2)0.5006 (2)0.0088 (2)0.0424 (4)
H1CA0.26430.58150.02070.051*
C1D0.2402 (2)0.4603 (2)0.1183 (2)0.0414 (4)
H1DA0.28150.51080.20530.05*
C1E0.18751 (19)0.34521 (18)0.09860 (19)0.0336 (3)
H1EA0.19150.31850.17430.04*
C1F0.0673 (2)0.2167 (2)0.26681 (18)0.0397 (4)
H1FA0.03290.21920.25050.06*
H1FB0.13050.11460.3040.06*
H1FC0.06530.25730.33490.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01980 (12)0.02218 (11)0.02716 (12)0.00602 (8)0.00176 (8)0.01322 (8)
O10.0264 (6)0.0324 (6)0.0575 (8)0.0128 (5)0.0049 (5)0.0193 (6)
O20.0342 (7)0.0406 (7)0.0408 (6)0.0122 (5)0.0116 (5)0.0268 (5)
O30.0387 (7)0.0543 (8)0.0456 (7)0.0036 (6)0.0154 (6)0.0291 (6)
O40.0388 (7)0.0291 (6)0.0288 (5)0.0013 (5)0.0068 (5)0.0061 (4)
C10.0199 (7)0.0263 (7)0.0239 (6)0.0055 (5)0.0008 (5)0.0081 (5)
C20.0295 (8)0.0347 (8)0.0314 (8)0.0075 (7)0.0112 (6)0.0154 (6)
C30.0481 (12)0.0612 (14)0.0708 (14)0.0102 (11)0.0179 (11)0.0477 (12)
C40.102 (2)0.085 (2)0.0341 (11)0.0216 (17)0.0300 (13)0.0076 (12)
C50.0283 (10)0.0836 (18)0.110 (2)0.0247 (11)0.0200 (12)0.0580 (17)
C60.0203 (7)0.0364 (8)0.0215 (6)0.0050 (6)0.0007 (5)0.0116 (6)
C70.0361 (9)0.0281 (7)0.0224 (6)0.0077 (6)0.0070 (6)0.0061 (5)
C80.0391 (11)0.0744 (16)0.0519 (12)0.0178 (11)0.0188 (9)0.0318 (11)
C90.125 (2)0.0509 (13)0.0361 (10)0.0530 (15)0.0006 (12)0.0069 (9)
C100.0517 (11)0.0413 (9)0.0287 (8)0.0139 (8)0.0127 (7)0.0108 (7)
N10.0215 (6)0.0253 (6)0.0350 (7)0.0048 (5)0.0023 (5)0.0163 (5)
C1A0.0244 (7)0.0309 (7)0.0388 (8)0.0025 (6)0.0056 (6)0.0206 (6)
C1B0.0306 (9)0.0334 (8)0.0588 (11)0.0045 (7)0.0072 (8)0.0270 (8)
C1C0.0331 (9)0.0320 (8)0.0685 (13)0.0079 (7)0.0033 (9)0.0269 (9)
C1D0.0367 (10)0.0317 (8)0.0540 (11)0.0134 (7)0.0088 (8)0.0158 (8)
C1E0.0286 (8)0.0300 (8)0.0428 (9)0.0083 (7)0.0031 (7)0.0167 (7)
C1F0.0470 (11)0.0437 (10)0.0353 (8)0.0130 (8)0.0012 (8)0.0224 (8)
Geometric parameters (Å, º) top
Fe1—O4i2.0508 (11)C7—C81.522 (3)
Fe1—O12.0571 (13)C7—C91.523 (3)
Fe1—O32.0675 (13)C7—C101.529 (2)
Fe1—O2i2.0717 (11)C8—H8A0.98
Fe1—N12.1284 (13)C8—H8B0.98
Fe1—Fe1i2.8576 (4)C8—H8C0.98
O1—C11.2548 (19)C9—H9A0.98
O2—C11.2508 (19)C9—H9B0.98
O2—Fe1i2.0717 (11)C9—H9C0.98
O3—C61.255 (2)C10—H10A0.98
O4—C61.255 (2)C10—H10B0.98
O4—Fe1i2.0508 (11)C10—H10C0.98
C1—C21.529 (2)N1—C1A1.342 (2)
C2—C41.508 (3)N1—C1E1.362 (2)
C2—C51.529 (3)C1A—C1B1.399 (2)
C2—C31.535 (3)C1A—C1F1.483 (2)
C3—H3A0.98C1B—C1C1.368 (3)
C3—H3B0.98C1B—H1BA0.95
C3—H3C0.98C1C—C1D1.382 (3)
C4—H4A0.98C1C—H1CA0.95
C4—H4B0.98C1D—C1E1.378 (2)
C4—H4C0.98C1D—H1DA0.95
C5—H5A0.98C1E—H1EA0.95
C5—H5B0.98C1F—H1FA0.98
C5—H5C0.98C1F—H1FB0.98
C6—C71.527 (2)C1F—H1FC0.98
O4i—Fe1—O189.37 (5)C8—C7—C9110.6 (2)
O4i—Fe1—O3162.10 (6)C8—C7—C6105.56 (13)
O1—Fe1—O387.58 (6)C9—C7—C6110.04 (16)
O4i—Fe1—O2i89.38 (5)C8—C7—C10110.31 (17)
O1—Fe1—O2i161.85 (5)C9—C7—C10109.23 (15)
O3—Fe1—O2i88.07 (5)C6—C7—C10111.10 (14)
O4i—Fe1—N1101.37 (5)C7—C8—H8A109.5
O1—Fe1—N1107.04 (5)C7—C8—H8B109.5
O3—Fe1—N196.39 (5)H8A—C8—H8B109.5
O2i—Fe1—N190.95 (5)C7—C8—H8C109.5
O4i—Fe1—Fe1i77.91 (4)H8A—C8—H8C109.5
O1—Fe1—Fe1i86.43 (4)H8B—C8—H8C109.5
O3—Fe1—Fe1i84.30 (4)C7—C9—H9A109.5
O2i—Fe1—Fe1i75.61 (4)C7—C9—H9B109.5
N1—Fe1—Fe1i166.53 (4)H9A—C9—H9B109.5
C1—O1—Fe1119.93 (11)C7—C9—H9C109.5
C1—O2—Fe1i133.33 (11)H9A—C9—H9C109.5
C6—O3—Fe1121.86 (12)H9B—C9—H9C109.5
C6—O4—Fe1i130.76 (11)C7—C10—H10A109.5
O2—C1—O1124.45 (15)C7—C10—H10B109.5
O2—C1—C2116.85 (14)H10A—C10—H10B109.5
O1—C1—C2118.67 (15)C7—C10—H10C109.5
C4—C2—C5110.6 (2)H10A—C10—H10C109.5
C4—C2—C1106.23 (16)H10B—C10—H10C109.5
C5—C2—C1109.10 (15)C1A—N1—C1E118.33 (14)
C4—C2—C3112.1 (2)C1A—N1—Fe1126.41 (11)
C5—C2—C3107.82 (18)C1E—N1—Fe1114.92 (11)
C1—C2—C3111.00 (15)N1—C1A—C1B121.33 (16)
C2—C3—H3A109.5N1—C1A—C1F116.98 (15)
C2—C3—H3B109.5C1B—C1A—C1F121.69 (16)
H3A—C3—H3B109.5C1C—C1B—C1A119.52 (17)
C2—C3—H3C109.5C1C—C1B—H1BA120.2
H3A—C3—H3C109.5C1A—C1B—H1BA120.2
H3B—C3—H3C109.5C1B—C1C—C1D119.66 (17)
C2—C4—H4A109.5C1B—C1C—H1CA120.2
C2—C4—H4B109.5C1D—C1C—H1CA120.2
H4A—C4—H4B109.5C1E—C1D—C1C118.50 (17)
C2—C4—H4C109.5C1E—C1D—H1DA120.8
H4A—C4—H4C109.5C1C—C1D—H1DA120.8
H4B—C4—H4C109.5N1—C1E—C1D122.61 (17)
C2—C5—H5A109.5N1—C1E—H1EA118.7
C2—C5—H5B109.5C1D—C1E—H1EA118.7
H5A—C5—H5B109.5C1A—C1F—H1FA109.5
C2—C5—H5C109.5C1A—C1F—H1FB109.5
H5A—C5—H5C109.5H1FA—C1F—H1FB109.5
H5B—C5—H5C109.5C1A—C1F—H1FC109.5
O3—C6—O4124.77 (15)H1FA—C1F—H1FC109.5
O3—C6—C7117.45 (15)H1FB—C1F—H1FC109.5
O4—C6—C7117.70 (14)
O4i—Fe1—O1—C172.98 (13)O3—C6—C7—C943.7 (2)
O3—Fe1—O1—C189.39 (13)O4—C6—C7—C9139.25 (18)
O2i—Fe1—O1—C113.1 (2)O3—C6—C7—C10164.77 (15)
N1—Fe1—O1—C1174.67 (12)O4—C6—C7—C1018.2 (2)
Fe1i—Fe1—O1—C14.95 (12)O4i—Fe1—N1—C1A55.44 (13)
O4i—Fe1—O3—C65.7 (3)O1—Fe1—N1—C1A37.42 (14)
O1—Fe1—O3—C686.11 (14)O3—Fe1—N1—C1A126.84 (13)
O2i—Fe1—O3—C676.26 (14)O2i—Fe1—N1—C1A145.00 (13)
N1—Fe1—O3—C6167.00 (14)Fe1i—Fe1—N1—C1A140.97 (14)
Fe1i—Fe1—O3—C60.53 (13)O4i—Fe1—N1—C1E131.33 (11)
Fe1i—O2—C1—O11.9 (3)O1—Fe1—N1—C1E135.81 (11)
Fe1i—O2—C1—C2175.95 (10)O3—Fe1—N1—C1E46.39 (12)
Fe1—O1—C1—O25.5 (2)O2i—Fe1—N1—C1E41.77 (12)
Fe1—O1—C1—C2172.25 (10)Fe1i—Fe1—N1—C1E45.8 (2)
O2—C1—C2—C474.1 (2)C1E—N1—C1A—C1B1.8 (2)
O1—C1—C2—C4103.8 (2)Fe1—N1—C1A—C1B171.27 (12)
O2—C1—C2—C545.1 (2)C1E—N1—C1A—C1F178.04 (15)
O1—C1—C2—C5136.93 (18)Fe1—N1—C1A—C1F8.9 (2)
O2—C1—C2—C3163.78 (17)N1—C1A—C1B—C1C0.9 (3)
O1—C1—C2—C318.3 (2)C1F—C1A—C1B—C1C178.84 (17)
Fe1—O3—C6—O45.0 (2)C1A—C1B—C1C—C1D1.0 (3)
Fe1—O3—C6—C7171.88 (11)C1B—C1C—C1D—C1E2.0 (3)
Fe1i—O4—C6—O38.7 (3)C1A—N1—C1E—C1D0.7 (2)
Fe1i—O4—C6—C7168.15 (11)Fe1—N1—C1E—C1D173.13 (14)
O3—C6—C7—C875.6 (2)C1C—C1D—C1E—N11.2 (3)
O4—C6—C7—C8101.42 (19)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Fe2(C5H9O2)4(C6H7N)2]
Mr702.44
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.5387 (8), 10.5403 (9), 10.5546 (9)
α, β, γ (°)64.138 (2), 83.600 (2), 72.090 (2)
V3)908.30 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionGaussian
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.762, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
8222, 4949, 4259
Rint0.032
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.11
No. of reflections4949
No. of parameters206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.48

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—O4i2.0508 (11)Fe1—Fe1i2.8576 (4)
Fe1—O12.0571 (13)O1—C11.2548 (19)
Fe1—O32.0675 (13)O2—C11.2508 (19)
Fe1—O2i2.0717 (11)O3—C61.255 (2)
Fe1—N12.1284 (13)O4—C61.255 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

GAT thanks the Danish Research Council (DANSYNC) for financial support.

References

First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCelengil-Cetin, R., Staples, R. J. & Stavropoulos, P. (2000). Inorg. Chem. 39, 5838–5846.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, G. (1980). Acta Cryst. B36, 3107–3109.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds