inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages i18-i19

The solid solution Na0.39(NH4)1.61SO4·Te(OH)6

aLaboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia, and bLaboratoire Léon Brillouin, CE Saclay, Bâtiment 563, 91191 Gif-sur-Yvette Cedex, France
*Correspondence e-mail: m_abdelhedi2002@yahoo.fr

(Received 14 December 2007; accepted 31 January 2008; online 6 February 2008)

The title compound, sodium ammonium sulfate–telluric acid (1/1), Na0.39(NH4)1.61SO4·Te(OH)6, is isostructural with other solid solutions in the series M1−x(NH4)xSO4·Te(OH)6, where ammonium is partially replaced with an alkali metal (M = K, Rb or Cs). The structure is composed of planes of Te(OH)6 octa­hedra alternating with planes of SO4 tetra­hedra. The Na+/NH4+ cations are statistically distributed over the same position and are located between the planes. The structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonds between the telluric acid adducts and the O atoms of sulfate groups, and between the ammonium cations and O atoms, respectively. Both Te atoms lie on centres of symmetry.

Related literature

For the sodium end-member of the solid solution series Na1−x(NH4)xSO4·Te(OH)6, see: Zilber et al. (1980[Zilber, R., Tordjman, I. & Guitel, J. C. (1980). Acta Cryst. B36, 2741-2743.]). For the ammonium end-member of the same series, see: Zilber et al. (1981[Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1981). Acta Cryst. B37, 650-652.]). For other solid solutions in the system M1−x(NH4)xSO4·Te(OH)6, where ammonium is partially replaced by an alkali metal, see: Dammak et al. (2005[Dammak, M., Ktari, L., Cousson, A. & Mhiri, T. (2005). J. Solid State Chem. 178, 2109-2116.]) for M = Cs; Ktari et al. (2002[Ktari, L., Dammak, M., Mhiri, T. & Kolsi, A. W. (2002). Phys. Chem. News, 8, 1-8.]) for M = Rb; and Ktari et al. (2004[Ktari, L., Dammak, M., Hadrich, A., Cousson, A., Nierlich, M., Romain, F. & Mhiri, T. (2004). Solid State Sci. 6, 1393-1401.]) for M = K. For related literature, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Experimental

Crystal data
  • Na0.39(NH4)1.61SO4·Te(OH)6

  • Mr = 357.22

  • Monoclinic, P 21 /c

  • a = 13.690 (1) Å

  • b = 6.592 (1) Å

  • c = 11.345 (1) Å

  • β = 106.58 (1)°

  • V = 981.26 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 298 K

  • 0.15 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2007[Spek, A. L. (2007). PLATON. Utrecht University, The Netherlands.]) Tmin = 0.615, Tmax = 0.719

  • 919 measured reflections

  • 849 independent reflections

  • 638 reflections with I > 3σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.043

  • S = 0.93

  • 638 reflections

  • 104 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected bond lengths (Å)

Te1—O1 1.903 (6)
Te1—O2 1.905 (4)
Te1—O3 1.916 (3)
Te2—O4 1.914 (3)
Te2—O5 1.915 (4)
Te2—O6 1.904 (5)
S1—O7 1.486 (6)
S1—O8 1.485 (3)
S1—O9 1.474 (3)
S1—O10 1.460 (6)
Na1—O6i 2.873 (4)
Na1—O4ii 2.937 (6)
Na1—O5iii 2.947 (4)
Na1—O3iv 2.950 (4)
Na1—O7v 2.978 (7)
Na1—O10vi 3.008 (4)
Na1—O9 3.120 (4)
Na1—O6ii 3.267 (6)
Na1—O5vii 3.278 (5)
Na2—O9 2.938 (5)
Na2—O8vi 2.966 (4)
Na2—O4ii 3.029 (4)
Na2—O10viii 3.037 (7)
Na2—O2ix 3.050 (4)
Na2—O2x 3.063 (5)
Na2—O1xi 3.144 (5)
Na2—O3vii 3.164 (5)
Na2—O1iv 3.305 (6)
Symmetry codes: (i) [-x, y-{\script{3\over 2}}, -z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y+1, z; (vii) -x, -y+1, -z; (viii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) x-1, y, z; (x) -x, -y, -z; (xi) x-1, y-1, z.

Table 2
Hydrogen-bond and short contact geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O9xii 0.924 (4) 1.787 (4) 2.700 (6) 169.2 (2)
O3—H3⋯O8xiii 0.985 (5) 1.871 (5) 2.799 (7) 155.7 (2)
O4—H4⋯O7xiv 0.937 (3) 1.798 (3) 2.706 (7) 162.4 (2)
O6—H6⋯O10xiii 0.963 (4) 1.706 (4) 2.658 (6) 169.5 (3)
N1⋯.O6i     2.873 (4)  
N1⋯O4ii     2.937 (6)  
N1⋯O5iii     2.947 (4)  
N1⋯O3iv     2.950 (4)  
N1⋯O7v     2.978 (7)  
N1⋯O10vi     3.008 (4)  
N2⋯O9     2.938 (5)  
N2⋯O8vi     2.966 (4)  
N2⋯O4ii     3.029 (4)  
N2⋯O10viii     3.037 (7)  
N2⋯O2ix     3.050 (4)  
N2⋯O2x     3.063 (5)  
Symmetry codes: (i) [-x, y-{\script{3\over 2}}, -z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y+1, z; (viii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) x-1, y, z; (x) -x, -y, -z; (xii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (xiii) [-x, y+{\script{3\over 2}}, -z-{\script{1\over 2}}]; (xiv) x, y+2, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The studies of a partial cationic substitution on symmetry and physical properties of solid solutions in the series M1 - x(NH4)xSO4.Te(OH)6 (M = K, Rb and Cs) have been reported in previous communications, viz. for K0.84(NH4)1.16SO4.Te(OH)6 (Ktari et al.., 2004), Rb1.12(NH4)0.88SO4.Te(OH)6 (Ktari et al.., 2002), and Cs0.86(NH4)1.14SO4.Te(OH)6 (Dammak et al.., 2005). To continue these studies, we have now investigated the solid solution Na0.39(NH4)1.61SO4.Te(OH)6. This compound is isostructural with the aforementioned phases.

Fig. 1 shows a projection of the structure on the ab plane. The structure can be regarded as being built up of planes of Te(OH)6 octahedra (at x = 0 and 1/2) alternating with planes of SO4 tetrahedra (at x 1/4). The statistically disordered Na+/NH4+ cations are intercalated between these planes. Both Te atoms are situated on inversion centres and exhibit similar Te(OH)6 octahedra, with Te—O distances and O—Te—O angles ranging from 1.903 (6) to 1.916 (3) Å, and from 87.6 (2) to 92.4 (2)°, respectively (Fig. 2). In the sodium end-member Na2SO4.Te(OH)6 (Zilber et al., 1980), the Te—O distances range from 1.879 (4) to 1.932 (3) Å, whereas in the ammonium end-member (NH4)2SO4.Te(OH)6 (Zilber et al., 1981) they vary from 1.874 (3) to 1.944 (3) Å. The SO4 tetrahedra in the title compound are quite regular with S—O distances between 1.460 (6) and 1.486 (6)Å and O—S—O angles between 108.6 (3) and 110.6 (3)°. In the sodium end-member, the S—O distances are nearly the same (1.461 (5) to 1.497 (5) Å), whilst in the ammonium end-member they spread between 1.373 (11) and 1.565 (8) Å. In the mixed solution the Na/N atoms are 9-coordinate with (Na/N)—O bonds ranging from 2.873 (4) to 3.278 (5)Å for Na1/N1 and from 2.938 (5) to 3.305 (6)Å for Na2/N2. Thereby every cation is coordinated by three oxygen atoms belonging to SO4 tetrahedra and by six oxygen atoms belonging to Te(OH)6 octahedra. The structure of the title compound is stabilized via medium-strong O—H···O hydrogen bonds between the Te(OH)6 octahedra and SO4 tetrahedra (Fig. 3), and between N—H···O hydrogen bonds between the ammonium cations and various oxygen atoms in the structure (see hydrogen bonding Table).

Related literature top

For the sodium end-member of the solid solution series Na1 - x(NH4)xSO4.Te(OH)6, see: Zilber et al. (1980). For the ammonium end-member of the same series, see: Zilber et al. (1981). For other solid solutions in the system M1 - x(NH4)xSO4.Te(OH)6, where ammonium is partially replaced by an alkaline metal, see: Dammak et al. (2005) for M = Cs; Ktari et al. (2002) for M = Rb; and Ktari et al. (2004) for M = K.

For related literature, see: Prince (1982); Watkin (1994).

Experimental top

Transparent, colorless single crystals of the title compound were grown from an aqueous solution consisting of a stoichiometric mixture (ratio 1:1.5:0.5) of H6TeO6 (Aldrich, 99%) (NH4)2SO4 (Aldrich, 99.99%) and Na2SO4 (Aldrich, 99%) after evaporation at room temperature.

Refinement top

H atoms of the Te(OH)6 group were located in an electron density difference map and were refined with O—H distance restraints of 0.95 (2) Å and a common Uiso parameter. H atoms of the ammonium groups could not be located and were excluded from the refinement. For the refinement of the occupation factors for N and Na atoms, their sums were restrained to be equal to 1. The highest peak in the final Fourier map is located 0.044 Å from Te2 and the deepest hole 0.43 Å from the same atom.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Projection of the crystal structure of the title compound on the ab plane.
[Figure 2] Fig. 2. A part of the structure of Na0.39(NH4)1.61SO4.Te(OH)6, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes:(a) -x + 1,-y, -z; (b) -x, -y + 1, -z]
[Figure 3] Fig. 3. Crystal structure of Na0.39(NH4)1.61SO4.Te(OH)6 showing hydrogen bonds with dashed lines.
sodium ammonium sulfate–telluric acid (1/1) top
Crystal data top
Na0.39(NH4)1.61SO4·Te(OH)6F(000) = 678.224
Mr = 357.22Dx = 2.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 919 reflections
a = 13.690 (1) Åθ = 2.7–30.1°
b = 6.592 (1) ŵ = 3.30 mm1
c = 11.345 (1) ÅT = 298 K
β = 106.58 (1)°Parallelepiped, colourless
V = 981.26 (19) Å30.15 × 0.14 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
638 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.000
ϕ scansθmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2007)
h = 1614
Tmin = 0.615, Tmax = 0.719k = 77
919 measured reflectionsl = 55
849 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 0.93 Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982); W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.527 0.367 0.302
638 reflections(Δ/σ)max = 0.000105
104 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = 1.15 e Å3
Crystal data top
Na0.39(NH4)1.61SO4·Te(OH)6V = 981.26 (19) Å3
Mr = 357.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.690 (1) ŵ = 3.30 mm1
b = 6.592 (1) ÅT = 298 K
c = 11.345 (1) Å0.15 × 0.14 × 0.10 mm
β = 106.58 (1)°
Data collection top
Nonius KappaCCD
diffractometer
849 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2007)
638 reflections with I > 3σ(I)
Tmin = 0.615, Tmax = 0.719Rint = 0.000
919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.043H-atom parameters constrained
S = 0.93Δρmax = 0.51 e Å3
638 reflectionsΔρmin = 1.15 e Å3
104 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.50000.50000.00000.0099
Te20.00001.00000.00000.0106
S10.24900 (9)0.49139 (17)0.2352 (2)0.0124
Na10.1448 (2)0.0149 (2)0.3454 (2)0.01810.2590
N10.1448 (2)0.0149 (2)0.3454 (2)0.01810.7410
Na20.3539 (2)0.0047 (2)0.0920 (2)0.02290.1300
N20.3539 (2)0.0047 (2)0.0920 (2)0.02290.8700
O10.5309 (3)0.5871 (6)0.1453 (6)0.0241
O20.4606 (3)0.2370 (5)0.0661 (5)0.0232
O30.3647 (2)0.6044 (5)0.0656 (5)0.0174
O40.1350 (2)1.0859 (5)0.0867 (5)0.0188
O50.0167 (2)1.2375 (5)0.1011 (5)0.0150
O60.0519 (2)1.1390 (5)0.1165 (6)0.0174
O70.1698 (3)0.5105 (5)0.1149 (6)0.0221
O80.3350 (2)0.6287 (5)0.2355 (5)0.0160
O90.2843 (2)0.2792 (5)0.2508 (5)0.0202
O100.2079 (3)0.5499 (6)0.3357 (6)0.0213
H10.54960.49420.16310.0500*
H20.40060.24890.12880.0500*
H30.37480.70410.12570.0500*
H40.13281.22730.09420.0500*
H50.03791.33020.05910.0500*
H60.10371.05630.13470.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.00995 (8)0.00995 (8)0.00995 (8)0.00017 (8)0.00296 (8)0.00017 (8)
Te20.01064 (8)0.01064 (8)0.01064 (8)0.00017 (8)0.00316 (8)0.00017 (8)
S10.0128 (9)0.0116 (8)0.013 (3)0.0000 (4)0.0042 (12)0.0010 (8)
Na10.0213 (2)0.0181 (2)0.0197 (2)0.0029 (2)0.0133 (2)0.0000 (2)
N10.0213 (2)0.0181 (2)0.0197 (2)0.0029 (2)0.0133 (2)0.0000 (2)
Na20.0233 (2)0.0199 (2)0.0285 (2)0.0014 (2)0.0122 (2)0.0024 (2)
N20.0233 (2)0.0199 (2)0.0285 (2)0.0014 (2)0.0122 (2)0.0024 (2)
O10.0316 (18)0.030 (2)0.016 (2)0.0127 (15)0.015 (2)0.009 (2)
O20.0272 (16)0.0145 (12)0.020 (4)0.0006 (12)0.006 (2)0.0080 (17)
O30.0103 (11)0.0209 (16)0.021 (4)0.0017 (11)0.0045 (16)0.003 (2)
O40.0143 (11)0.0161 (16)0.023 (4)0.0017 (11)0.0005 (15)0.0052 (19)
O50.0194 (15)0.0176 (14)0.008 (3)0.0032 (12)0.0042 (19)0.0027 (16)
O60.0234 (16)0.0191 (15)0.014 (3)0.0045 (13)0.0119 (19)0.0034 (17)
O70.0190 (18)0.0192 (18)0.022 (4)0.0001 (12)0.004 (2)0.002 (2)
O80.0157 (15)0.0212 (16)0.013 (5)0.0030 (12)0.006 (2)0.002 (2)
O90.0167 (16)0.0146 (13)0.026 (5)0.0022 (12)0.001 (2)0.001 (2)
O100.0189 (18)0.0247 (16)0.026 (4)0.0032 (14)0.015 (2)0.005 (2)
Geometric parameters (Å, º) top
Te1—H1i2.146O4—H40.937
Te1—O3i1.916 (3)O5—H50.978
Te1—O2i1.905 (4)O6—H60.963
Te1—O1i1.903 (6)Na1—O6iii2.873 (4)
Te1—O11.903 (6)Na1—O4iv2.937 (6)
Te1—O21.905 (4)Na1—O5v2.947 (4)
Te1—O31.916 (3)Na1—O3vi2.950 (4)
Te1—H12.146Na1—O7vii2.978 (7)
Te2—O5ii1.915 (4)Na1—O10viii3.008 (4)
Te2—O4ii1.914 (3)Na1—O93.120 (4)
Te2—O6ii1.904 (5)Na1—O6iv3.267 (6)
Te2—O41.914 (3)Na1—O5ix3.278 (5)
Te2—O51.915 (4)Na2—O92.938 (5)
Te2—O61.904 (5)Na2—O8viii2.966 (4)
S1—O71.486 (6)Na2—O4iv3.029 (4)
S1—O81.485 (3)Na2—O10x3.037 (7)
S1—O91.474 (3)Na2—O2xi3.050 (4)
S1—O101.460 (6)Na2—O2xii3.063 (5)
O1—H10.715Na2—O1xiii3.144 (5)
O2—H20.924Na2—O3ix3.164 (5)
O3—H30.985Na2—O1vi3.305 (6)
O3i—Te1—O2i92.32 (15)O4ii—Te2—O6ii89.85 (18)
O3i—Te1—O1i89.1 (2)O5ii—Te2—O490.07 (16)
O2i—Te1—O1i92.4 (2)O4ii—Te2—O4179.994
O3i—Te1—O190.9 (2)O6ii—Te2—O490.15 (18)
O2i—Te1—O187.6 (2)O5ii—Te2—O5179.994
O1i—Te1—O1179.994O4ii—Te2—O590.07 (16)
H1i—Te1—O2103.413O6ii—Te2—O588.98 (19)
O3i—Te1—O287.68 (15)O4—Te2—O589.93 (16)
O2i—Te1—O2179.994O5ii—Te2—O688.98 (19)
O1i—Te1—O287.6 (2)O4ii—Te2—O690.15 (18)
O1—Te1—O292.4 (2)O6ii—Te2—O6179.994
H1i—Te1—O379.615O4—Te2—O689.85 (18)
O3i—Te1—O3179.994O5—Te2—O691.02 (19)
O2i—Te1—O387.68 (15)O7—S1—O8108.7 (3)
O1i—Te1—O390.9 (2)O7—S1—O9108.6 (3)
O1—Te1—O389.1 (2)O8—S1—O9110.21 (19)
O2—Te1—O392.32 (15)O7—S1—O10110.6 (3)
O5ii—Te2—O4ii89.93 (16)O8—S1—O10108.6 (3)
O5ii—Te2—O6ii91.02 (19)O9—S1—O10110.1 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z; (iii) x, y3/2, z1/2; (iv) x, y1, z; (v) x, y+3/2, z1/2; (vi) x, y1/2, z1/2; (vii) x, y1/2, z1/2; (viii) x, y+1, z; (ix) x, y+1, z; (x) x, y1/2, z+1/2; (xi) x1, y, z; (xii) x, y, z; (xiii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O9xiv0.924 (4)1.787 (4)2.700 (6)169.2 (2)
O3—H3···O8xv0.985 (5)1.871 (5)2.799 (7)155.7 (2)
O4—H4···O7xvi0.937 (3)1.798 (3)2.706 (7)162.4 (2)
O6—H6···O10xv0.963 (4)1.706 (4)2.658 (6)169.5 (3)
N1···O6iii2.873 (4)
N1···O4iv2.937 (6)
N1···O5v2.947 (4)
N1···O3vi2.950 (4)
N1···O7vii2.978 (7)
N1···O10viii3.008 (4)
N2···O92.938 (5)
N2···O8viii2.966 (4)
N2···O4iv3.029 (4)
N2···O10x3.037 (7)
N2···O2xi3.050 (4)
N2···O2xii3.063 (5)
Symmetry codes: (iii) x, y3/2, z1/2; (iv) x, y1, z; (v) x, y+3/2, z1/2; (vi) x, y1/2, z1/2; (vii) x, y1/2, z1/2; (viii) x, y+1, z; (x) x, y1/2, z+1/2; (xi) x1, y, z; (xii) x, y, z; (xiv) x, y+1/2, z1/2; (xv) x, y+3/2, z1/2; (xvi) x, y+2, z.

Experimental details

Crystal data
Chemical formulaNa0.39(NH4)1.61SO4·Te(OH)6
Mr357.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.690 (1), 6.592 (1), 11.345 (1)
β (°) 106.58 (1)
V3)981.26 (19)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.15 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2007)
Tmin, Tmax0.615, 0.719
No. of measured, independent and
observed [I > 3σ(I)] reflections
919, 849, 638
Rint0.000
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.043, 0.93
No. of reflections638
No. of parameters104
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 1.15

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg & Berndt, 1999).

Selected bond lengths (Å) top
Te1—O11.903 (6)Na1—O7v2.978 (7)
Te1—O21.905 (4)Na1—O10vi3.008 (4)
Te1—O31.916 (3)Na1—O93.120 (4)
Te2—O41.914 (3)Na1—O6ii3.267 (6)
Te2—O51.915 (4)Na1—O5vii3.278 (5)
Te2—O61.904 (5)Na2—O92.938 (5)
S1—O71.486 (6)Na2—O8vi2.966 (4)
S1—O81.485 (3)Na2—O4ii3.029 (4)
S1—O91.474 (3)Na2—O10viii3.037 (7)
S1—O101.460 (6)Na2—O2ix3.050 (4)
Na1—O6i2.873 (4)Na2—O2x3.063 (5)
Na1—O4ii2.937 (6)Na2—O1xi3.144 (5)
Na1—O5iii2.947 (4)Na2—O3vii3.164 (5)
Na1—O3iv2.950 (4)Na2—O1iv3.305 (6)
Symmetry codes: (i) x, y3/2, z1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z1/2; (v) x, y1/2, z1/2; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x, y1/2, z+1/2; (ix) x1, y, z; (x) x, y, z; (xi) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O9xii0.924 (4)1.787 (4)2.700 (6)169.2 (2)
O3—H3···O8xiii0.985 (5)1.871 (5)2.799 (7)155.7 (2)
O4—H4···O7xiv0.937 (3)1.798 (3)2.706 (7)162.4 (2)
O6—H6···O10xiii0.963 (4)1.706 (4)2.658 (6)169.5 (3)
N1···O6i..2.873 (4).
N1···O4ii..2.937 (6).
N1···O5iii..2.947 (4).
N1···O3iv..2.950 (4).
N1···O7v..2.978 (7).
N1···O10vi..3.008 (4).
N2···O9..2.938 (5).
N2···O8vi..2.966 (4).
N2···O4ii..3.029 (4).
N2···O10viii..3.037 (7).
N2···O2ix..3.050 (4).
N2···O2x..3.063 (5).
Symmetry codes: (i) x, y3/2, z1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z1/2; (v) x, y1/2, z1/2; (vi) x, y+1, z; (viii) x, y1/2, z+1/2; (ix) x1, y, z; (x) x, y, z; (xii) x, y+1/2, z1/2; (xiii) x, y+3/2, z1/2; (xiv) x, y+2, z.
 

Acknowledgements

This project was supported by the French Ministry of Research and New Technologies and the French/Tunisian Twin Committee for University Collaboration.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDammak, M., Ktari, L., Cousson, A. & Mhiri, T. (2005). J. Solid State Chem. 178, 2109–2116.  Web of Science CrossRef CAS Google Scholar
First citationKtari, L., Dammak, M., Hadrich, A., Cousson, A., Nierlich, M., Romain, F. & Mhiri, T. (2004). Solid State Sci. 6, 1393–1401.  Web of Science CrossRef CAS Google Scholar
First citationKtari, L., Dammak, M., Mhiri, T. & Kolsi, A. W. (2002). Phys. Chem. News, 8, 1–8.  CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2007). PLATON. Utrecht University, The Netherlands.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1981). Acta Cryst. B37, 650–652.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZilber, R., Tordjman, I. & Guitel, J. C. (1980). Acta Cryst. B36, 2741–2743.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages i18-i19
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds