metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Formyl-2-meth­oxy­phenolato)tris­­(2-methyl-2-phenyl­prop­yl)tin(IV)

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: dongyanchem@163.com

(Received 2 October 2007; accepted 31 January 2008; online 6 February 2008)

The Sn atom of the title compound, [Sn(C10H13)3(C8H7O3)], is four-coordinate and possesses a distorted SnOC3 tetra­hedral geometry.

Related literature

For related literature, see: Domingos & Sheldrick (1974[Domingos, A. M. & Sheldrick, G. M. (1974). Acta Cryst. B30, 519-521.]); Yang et al. (2006[Yang, G.-M., Tan, G.-X., Ding, Y.-J. & Wu, J. (2006). Acta Cryst. E62, m1195-m1196.], 2007[Yang, H.-J., Tian, L.-J., Mao, W.-T. & Zheng, X.-F. (2007). Acta Cryst. E63, m1271.]); Zhang et al. (2002[Zhang, Z.-G., Huang, Y.-Q., Zou, Y., Zhang, S.-K. & Xie, Q.-L. (2002). Chem. J. Chin. Univ. 23, 399-402.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C10H13)3(C8H7O3)]

  • Mr = 669.44

  • Monoclinic, P 21 /n

  • a = 9.7900 (13) Å

  • b = 33.761 (4) Å

  • c = 10.3073 (13) Å

  • β = 92.873 (2)°

  • V = 3402.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 295 (2) K

  • 0.20 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 0.942

  • 26454 measured reflections

  • 6675 independent reflections

  • 5252 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.099

  • S = 1.06

  • 6675 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.038 (3)
Sn1—C21 2.142 (4)
Sn1—C11 2.145 (4)
Sn1—C1 2.148 (4)
O1—Sn1—C21 106.72 (15)
O1—Sn1—C11 101.37 (13)
C21—Sn1—C11 118.18 (15)
O1—Sn1—C1 93.83 (14)
C21—Sn1—C1 115.01 (16)
C11—Sn1—C1 116.65 (16)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Little attention has been paid to the condensing reaction of tris(2-methyl-2-phenylpropyl)tin oxide, {[C6H5C(CH3)2CH2]3Sn}2O, with phenols in the literature. In reported three structures, tris(2-methyl-2-phenylpropyl)tin pentachlorophenoate, 4-nitrophenolate, and 4-acetylphenolate (Zhang et al., 2002; Yang et al., 2006; Yang et al., 2007), the tin atom is four coordinated.

In the title compound, the Sn atom is also four-coordinate and possess a distorted SnOC3 tetrahedral geometry (Fig. 1). This is different from Me3SnOMe, in which almost planar trimethyltin groups are linked by two methoxy ligands forming infinite one-dimensional zigzag chains with nearly ideally trigonal-bipyramidal coordinated tin atom (Domingos & Sheldrick,1974), due to the crowding of the four bulky groups at the Sn atom in the title compound. The three Sn—C distances are almost equal [from 2.142 (4) to 2.148 (4) Å] and comparable with those [2.142 (2)–2.158 (2) and 2.144 (2)–2.157 (2) Å, respectively] in tris(2-methyl-2-phenylpropyl)tin 4-nitrophenolate and 4-acetylphenolate (Yang et al., 2006; Yang et al., 2007), but slightly longer than those [2.105 (4)–2.114 (4) Å] in tris(2-methyl-2-phenylpropyl)tin pentachlorophenoate (Zhang et al., 2002). The Sn—O dimension of the title compound is almost same as that [2.045 (2) and 2.041 (2) Å, respectively] of tris(2-methyl-2-phenylpropyl)tin 4-nitrophenolate and 4-acetylphenolate and shorter than that [2.103 (3) Å] found in tris(2-methyl-2-phenylpropyl)tin pentachlorophenoate.

Related literature top

For related literature, see: Domingos & Sheldrick (1974); Yang et al. (2006, 2007); Zhang et al. (2002).

Experimental top

The title compound was synthesized by condensing bis[tri(2-phenyl-2-methylpropyl)tin] oxide (1.05 g, 1 mmol) with 4-hydroxy-2-methoxybenzaldehyde (0.30 g, 2 mmol) in toluene (50 ml). Water was removed with a Dean-Stark water separator. The resulting clear solution was evaporated using a rotary evaporator. The white solid obtained was recrystallized from ethanol and crystals of title compound were obtained from chloroform-hexane (V/V, 1:1) by slow evaporation at room temperature (yield 81%, m.p. 388–389 K). Analysis, found: C 68.02, H 6.79%; calculated for C38H46O3Sn: C 68.17, H 6.93%.

Refinement top

H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and aldehydic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
(4-Formyl-2-methoxyphenolato)tris(2-methyl-2-phenylpropyl)tin(IV) top
Crystal data top
[Sn(C10H13)3(C8H7O3)]F(000) = 1392
Mr = 669.44Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 4584 reflections
a = 9.7900 (13) Åθ = 2.2–21.5°
b = 33.761 (4) ŵ = 0.79 mm1
c = 10.3073 (13) ÅT = 295 K
β = 92.873 (2)°Prism, colorless
V = 3402.5 (7) Å30.20 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
6675 independent reflections
Radiation source: fine-focus sealed tube5252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.859, Tmax = 0.942k = 4141
26454 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.023P)2 + 3.2918P]
where P = (Fo2 + 2Fc2)/3
6675 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Sn(C10H13)3(C8H7O3)]V = 3402.5 (7) Å3
Mr = 669.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7900 (13) ŵ = 0.79 mm1
b = 33.761 (4) ÅT = 295 K
c = 10.3073 (13) Å0.20 × 0.16 × 0.08 mm
β = 92.873 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
6675 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5252 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.942Rint = 0.055
26454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
6675 reflectionsΔρmin = 0.96 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.63396 (3)0.884454 (7)0.76497 (2)0.04078 (10)
O10.4361 (3)0.89038 (8)0.6964 (3)0.0552 (7)
O20.3783 (3)0.81358 (9)0.7079 (3)0.0634 (8)
O30.1355 (4)0.78647 (13)0.2522 (4)0.0956 (12)
C10.6474 (5)0.94423 (12)0.8359 (4)0.0560 (11)
H1A0.55520.95320.84960.067*
H1B0.69580.94350.92030.067*
C20.7167 (5)0.97585 (12)0.7536 (4)0.0573 (11)
C30.6356 (5)0.97925 (14)0.6225 (5)0.0789 (15)
H3A0.54170.98520.63720.118*
H3B0.64060.95460.57650.118*
H3C0.67371.00000.57200.118*
C40.7058 (6)1.01584 (14)0.8247 (6)0.0923 (18)
H4A0.61121.02210.83440.138*
H4B0.74731.03620.77500.138*
H4C0.75211.01410.90880.138*
C50.8666 (5)0.96629 (11)0.7398 (5)0.0565 (11)
C60.9267 (6)0.96385 (13)0.6211 (5)0.0679 (13)
H60.87350.96850.54540.081*
C71.0630 (6)0.95477 (15)0.6121 (6)0.0812 (16)
H71.09980.95300.53090.097*
C81.1438 (6)0.94842 (16)0.7202 (7)0.0866 (17)
H81.23590.94240.71370.104*
C91.0890 (6)0.95095 (16)0.8388 (6)0.0844 (17)
H91.14440.94680.91350.101*
C100.9512 (5)0.95968 (13)0.8497 (5)0.0663 (13)
H100.91540.96110.93150.080*
C110.7350 (4)0.87195 (11)0.5896 (4)0.0445 (9)
H11A0.66920.87600.51730.053*
H11B0.80670.89150.58160.053*
C120.7994 (4)0.83075 (11)0.5732 (4)0.0436 (9)
C130.8845 (5)0.83177 (14)0.4515 (4)0.0664 (13)
H13A0.82600.83810.37670.100*
H13B0.92590.80630.43950.100*
H13C0.95460.85160.46230.100*
C140.6860 (5)0.80029 (14)0.5503 (5)0.0675 (13)
H14A0.62930.80780.47560.101*
H14B0.63150.79910.62510.101*
H14C0.72560.77480.53580.101*
C150.8936 (4)0.82085 (11)0.6905 (4)0.0396 (9)
C160.9885 (4)0.84824 (13)0.7388 (4)0.0575 (11)
H160.99400.87280.69840.069*
C171.0749 (5)0.84018 (16)0.8449 (5)0.0782 (15)
H171.13700.85930.87530.094*
C181.0701 (6)0.80462 (18)0.9054 (5)0.0783 (16)
H181.12840.79930.97730.094*
C190.9787 (5)0.77666 (16)0.8598 (5)0.0741 (15)
H190.97500.75220.90090.089*
C200.8922 (4)0.78446 (13)0.7534 (4)0.0579 (12)
H200.83160.76500.72300.069*
C210.6354 (5)0.83972 (12)0.9124 (4)0.0547 (11)
H21A0.57800.81810.88030.066*
H21B0.72790.82960.92350.066*
C220.5881 (5)0.85141 (13)1.0473 (4)0.0567 (11)
C230.4406 (5)0.8664 (2)1.0298 (5)0.0923 (18)
H23A0.38470.84630.98790.138*
H23B0.43840.88980.97720.138*
H23C0.40630.87231.11320.138*
C240.5910 (7)0.81390 (17)1.1334 (5)0.102 (2)
H24A0.53170.79421.09410.153*
H24B0.56040.82051.21780.153*
H24C0.68260.80381.14180.153*
C250.6838 (4)0.88179 (13)1.1135 (4)0.0511 (10)
C260.8219 (5)0.87993 (15)1.1027 (5)0.0671 (13)
H260.85870.85961.05440.081*
C270.9098 (6)0.90794 (19)1.1631 (6)0.0865 (17)
H271.00370.90621.15450.104*
C280.8578 (9)0.93748 (19)1.2336 (6)0.098 (2)
H280.91550.95641.27260.117*
C290.7232 (9)0.93948 (19)1.2471 (6)0.108 (2)
H290.68760.95971.29650.130*
C300.6361 (6)0.91187 (16)1.1888 (5)0.0819 (16)
H300.54270.91371.20070.098*
C310.3764 (4)0.87261 (12)0.5919 (4)0.0480 (10)
C320.3435 (5)0.89388 (13)0.4813 (4)0.0598 (12)
H320.36680.92060.47810.072*
C330.2766 (5)0.87657 (15)0.3742 (4)0.0643 (13)
H330.25610.89140.29980.077*
C340.2407 (4)0.83744 (15)0.3786 (4)0.0579 (12)
C350.1688 (5)0.82004 (18)0.2631 (5)0.0753 (15)
H350.14800.83680.19320.090*
C360.2732 (4)0.81543 (13)0.4886 (4)0.0545 (11)
H360.25020.78870.49040.065*
C370.3390 (4)0.83231 (12)0.5952 (4)0.0476 (10)
C380.3435 (6)0.77269 (15)0.7182 (5)0.0832 (16)
H38A0.37600.76280.80150.125*
H38B0.38510.75800.65090.125*
H38C0.24600.76970.70930.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04377 (16)0.03930 (15)0.03881 (15)0.00142 (13)0.00246 (10)0.00157 (13)
O10.0413 (15)0.0565 (18)0.0669 (19)0.0020 (13)0.0061 (14)0.0146 (15)
O20.062 (2)0.0576 (19)0.070 (2)0.0053 (15)0.0016 (16)0.0036 (16)
O30.092 (3)0.092 (3)0.102 (3)0.005 (2)0.014 (2)0.037 (2)
C10.065 (3)0.046 (2)0.057 (3)0.002 (2)0.003 (2)0.012 (2)
C20.072 (3)0.037 (2)0.062 (3)0.004 (2)0.013 (2)0.002 (2)
C30.092 (4)0.063 (3)0.078 (4)0.001 (3)0.021 (3)0.017 (3)
C40.103 (4)0.045 (3)0.127 (5)0.003 (3)0.010 (4)0.013 (3)
C50.072 (3)0.033 (2)0.063 (3)0.011 (2)0.009 (2)0.003 (2)
C60.090 (4)0.051 (3)0.062 (3)0.011 (3)0.005 (3)0.011 (2)
C70.092 (4)0.062 (3)0.091 (4)0.014 (3)0.017 (4)0.006 (3)
C80.073 (4)0.063 (3)0.123 (5)0.015 (3)0.003 (4)0.015 (4)
C90.076 (4)0.072 (4)0.102 (5)0.008 (3)0.030 (3)0.010 (3)
C100.075 (3)0.061 (3)0.061 (3)0.014 (3)0.013 (3)0.004 (2)
C110.041 (2)0.053 (2)0.040 (2)0.0021 (18)0.0029 (17)0.0052 (18)
C120.038 (2)0.047 (2)0.046 (2)0.0058 (17)0.0017 (17)0.0083 (18)
C130.064 (3)0.083 (3)0.053 (3)0.003 (3)0.012 (2)0.010 (2)
C140.055 (3)0.068 (3)0.079 (3)0.014 (2)0.005 (2)0.018 (3)
C150.034 (2)0.036 (2)0.050 (2)0.0048 (16)0.0102 (17)0.0060 (17)
C160.057 (3)0.049 (3)0.065 (3)0.004 (2)0.013 (2)0.001 (2)
C170.075 (3)0.072 (4)0.084 (4)0.008 (3)0.031 (3)0.018 (3)
C180.084 (4)0.091 (4)0.058 (3)0.031 (3)0.012 (3)0.001 (3)
C190.076 (4)0.069 (3)0.079 (4)0.024 (3)0.013 (3)0.028 (3)
C200.050 (3)0.045 (2)0.078 (3)0.002 (2)0.006 (2)0.007 (2)
C210.075 (3)0.045 (2)0.044 (2)0.000 (2)0.004 (2)0.0038 (19)
C220.062 (3)0.064 (3)0.044 (2)0.003 (2)0.000 (2)0.007 (2)
C230.055 (3)0.155 (6)0.068 (4)0.007 (3)0.012 (3)0.005 (4)
C240.149 (6)0.099 (4)0.056 (3)0.046 (4)0.007 (3)0.029 (3)
C250.061 (3)0.057 (3)0.035 (2)0.007 (2)0.0008 (18)0.006 (2)
C260.063 (3)0.075 (3)0.063 (3)0.007 (3)0.005 (2)0.004 (3)
C270.074 (4)0.094 (4)0.089 (4)0.011 (3)0.020 (3)0.015 (4)
C280.135 (6)0.080 (4)0.076 (4)0.028 (4)0.023 (4)0.003 (3)
C290.149 (7)0.088 (5)0.087 (5)0.005 (5)0.010 (5)0.035 (4)
C300.084 (4)0.084 (4)0.079 (4)0.010 (3)0.016 (3)0.018 (3)
C310.031 (2)0.052 (2)0.061 (3)0.0034 (17)0.0009 (18)0.009 (2)
C320.058 (3)0.056 (3)0.065 (3)0.001 (2)0.004 (2)0.000 (2)
C330.060 (3)0.078 (4)0.054 (3)0.004 (2)0.002 (2)0.005 (2)
C340.040 (2)0.076 (3)0.057 (3)0.008 (2)0.001 (2)0.014 (2)
C350.062 (3)0.092 (4)0.072 (4)0.012 (3)0.002 (3)0.028 (3)
C360.042 (2)0.052 (3)0.069 (3)0.0024 (19)0.004 (2)0.009 (2)
C370.032 (2)0.055 (3)0.055 (3)0.0045 (18)0.0007 (18)0.004 (2)
C380.096 (4)0.064 (3)0.090 (4)0.008 (3)0.005 (3)0.009 (3)
Geometric parameters (Å, º) top
Sn1—O12.038 (3)C16—H160.9300
Sn1—C212.142 (4)C17—C181.355 (7)
Sn1—C112.145 (4)C17—H170.9300
Sn1—C12.148 (4)C18—C191.368 (7)
O1—C311.341 (5)C18—H180.9300
O2—C371.361 (5)C19—C201.377 (6)
O2—C381.427 (5)C19—H190.9300
O3—C351.183 (6)C20—H200.9300
C1—C21.541 (6)C21—C221.539 (6)
C1—H1A0.9700C21—H21A0.9700
C1—H1B0.9700C21—H21B0.9700
C2—C51.517 (6)C22—C251.527 (6)
C2—C31.537 (6)C22—C231.532 (6)
C2—C41.542 (6)C22—C241.546 (6)
C3—H3A0.9600C23—H23A0.9600
C3—H3B0.9600C23—H23B0.9600
C3—H3C0.9600C23—H23C0.9600
C4—H4A0.9600C24—H24A0.9600
C4—H4B0.9600C24—H24B0.9600
C4—H4C0.9600C24—H24C0.9600
C5—C61.386 (6)C25—C261.364 (6)
C5—C101.388 (6)C25—C301.374 (6)
C6—C71.377 (7)C26—C271.403 (7)
C6—H60.9300C26—H260.9300
C7—C81.350 (7)C27—C281.349 (8)
C7—H70.9300C27—H270.9300
C8—C91.362 (8)C28—C291.334 (8)
C8—H80.9300C28—H280.9300
C9—C101.390 (7)C29—C301.381 (8)
C9—H90.9300C29—H290.9300
C10—H100.9300C30—H300.9300
C11—C121.540 (5)C31—C321.373 (6)
C11—H11A0.9700C31—C371.410 (5)
C11—H11B0.9700C32—C331.384 (6)
C12—C151.520 (5)C32—H320.9300
C12—C141.523 (5)C33—C341.368 (6)
C12—C131.541 (5)C33—H330.9300
C13—H13A0.9600C34—C361.380 (6)
C13—H13B0.9600C34—C351.474 (6)
C13—H13C0.9600C35—H350.9300
C14—H14A0.9600C36—C371.369 (5)
C14—H14B0.9600C36—H360.9300
C14—H14C0.9600C38—H38A0.9600
C15—C161.386 (5)C38—H38B0.9600
C15—C201.390 (5)C38—H38C0.9600
C16—C171.376 (6)
O1—Sn1—C21106.72 (15)C18—C17—H17119.8
O1—Sn1—C11101.37 (13)C16—C17—H17119.8
C21—Sn1—C11118.18 (15)C17—C18—C19119.3 (5)
O1—Sn1—C193.83 (14)C17—C18—H18120.3
C21—Sn1—C1115.01 (16)C19—C18—H18120.3
C11—Sn1—C1116.65 (16)C18—C19—C20120.5 (5)
C31—O1—Sn1127.1 (2)C18—C19—H19119.7
C37—O2—C38117.1 (4)C20—C19—H19119.7
C2—C1—Sn1119.0 (3)C19—C20—C15121.4 (4)
C2—C1—H1A107.6C19—C20—H20119.3
Sn1—C1—H1A107.6C15—C20—H20119.3
C2—C1—H1B107.6C22—C21—Sn1118.0 (3)
Sn1—C1—H1B107.6C22—C21—H21A107.8
H1A—C1—H1B107.0Sn1—C21—H21A107.8
C5—C2—C3113.1 (4)C22—C21—H21B107.8
C5—C2—C1111.0 (3)Sn1—C21—H21B107.8
C3—C2—C1108.2 (4)H21A—C21—H21B107.2
C5—C2—C4108.8 (4)C25—C22—C23112.7 (4)
C3—C2—C4107.9 (4)C25—C22—C21111.7 (4)
C1—C2—C4107.6 (4)C23—C22—C21107.6 (4)
C2—C3—H3A109.5C25—C22—C24107.5 (4)
C2—C3—H3B109.5C23—C22—C24109.1 (4)
H3A—C3—H3B109.5C21—C22—C24108.1 (4)
C2—C3—H3C109.5C22—C23—H23A109.5
H3A—C3—H3C109.5C22—C23—H23B109.5
H3B—C3—H3C109.5H23A—C23—H23B109.5
C2—C4—H4A109.5C22—C23—H23C109.5
C2—C4—H4B109.5H23A—C23—H23C109.5
H4A—C4—H4B109.5H23B—C23—H23C109.5
C2—C4—H4C109.5C22—C24—H24A109.5
H4A—C4—H4C109.5C22—C24—H24B109.5
H4B—C4—H4C109.5H24A—C24—H24B109.5
C6—C5—C10116.7 (5)C22—C24—H24C109.5
C6—C5—C2123.5 (4)H24A—C24—H24C109.5
C10—C5—C2119.9 (4)H24B—C24—H24C109.5
C7—C6—C5121.9 (5)C26—C25—C30116.5 (5)
C7—C6—H6119.1C26—C25—C22121.4 (4)
C5—C6—H6119.1C30—C25—C22122.0 (4)
C8—C7—C6120.6 (6)C25—C26—C27121.4 (5)
C8—C7—H7119.7C25—C26—H26119.3
C6—C7—H7119.7C27—C26—H26119.3
C7—C8—C9119.3 (6)C28—C27—C26119.9 (6)
C7—C8—H8120.3C28—C27—H27120.1
C9—C8—H8120.3C26—C27—H27120.1
C8—C9—C10120.9 (5)C29—C28—C27119.7 (6)
C8—C9—H9119.6C29—C28—H28120.2
C10—C9—H9119.6C27—C28—H28120.2
C5—C10—C9120.6 (5)C28—C29—C30120.8 (6)
C5—C10—H10119.7C28—C29—H29119.6
C9—C10—H10119.7C30—C29—H29119.6
C12—C11—Sn1118.6 (3)C25—C30—C29121.6 (6)
C12—C11—H11A107.7C25—C30—H30119.2
Sn1—C11—H11A107.7C29—C30—H30119.2
C12—C11—H11B107.7O1—C31—C32120.5 (4)
Sn1—C11—H11B107.7O1—C31—C37121.1 (4)
H11A—C11—H11B107.1C32—C31—C37118.3 (4)
C15—C12—C14112.5 (3)C31—C32—C33121.6 (4)
C15—C12—C11110.3 (3)C31—C32—H32119.2
C14—C12—C11109.1 (3)C33—C32—H32119.2
C15—C12—C13108.7 (3)C34—C33—C32119.6 (4)
C14—C12—C13108.0 (3)C34—C33—H33120.2
C11—C12—C13108.1 (3)C32—C33—H33120.2
C12—C13—H13A109.5C33—C34—C36119.8 (4)
C12—C13—H13B109.5C33—C34—C35118.1 (5)
H13A—C13—H13B109.5C36—C34—C35122.0 (5)
C12—C13—H13C109.5O3—C35—C34125.2 (6)
H13A—C13—H13C109.5O3—C35—H35117.4
H13B—C13—H13C109.5C34—C35—H35117.4
C12—C14—H14A109.5C37—C36—C34121.0 (4)
C12—C14—H14B109.5C37—C36—H36119.5
H14A—C14—H14B109.5C34—C36—H36119.5
C12—C14—H14C109.5O2—C37—C36126.4 (4)
H14A—C14—H14C109.5O2—C37—C31114.0 (4)
H14B—C14—H14C109.5C36—C37—C31119.7 (4)
C16—C15—C20116.4 (4)O2—C38—H38A109.5
C16—C15—C12120.5 (3)O2—C38—H38B109.5
C20—C15—C12123.1 (4)H38A—C38—H38B109.5
C17—C16—C15121.9 (4)O2—C38—H38C109.5
C17—C16—H16119.1H38A—C38—H38C109.5
C15—C16—H16119.1H38B—C38—H38C109.5
C18—C17—C16120.5 (5)
C21—Sn1—O1—C3195.1 (3)C16—C15—C20—C191.4 (6)
C11—Sn1—O1—C3129.2 (4)C12—C15—C20—C19179.7 (4)
C1—Sn1—O1—C31147.4 (3)O1—Sn1—C21—C2278.4 (3)
O1—Sn1—C1—C299.6 (3)C11—Sn1—C21—C22168.4 (3)
C21—Sn1—C1—C2149.9 (3)C1—Sn1—C21—C2224.2 (4)
C11—Sn1—C1—C25.2 (4)Sn1—C21—C22—C2564.9 (4)
Sn1—C1—C2—C563.6 (4)Sn1—C21—C22—C2359.2 (5)
Sn1—C1—C2—C361.1 (4)Sn1—C21—C22—C24177.0 (3)
Sn1—C1—C2—C4177.5 (3)C23—C22—C25—C26159.5 (4)
C3—C2—C5—C64.7 (6)C21—C22—C25—C2638.2 (5)
C1—C2—C5—C6126.6 (4)C24—C22—C25—C2680.2 (5)
C4—C2—C5—C6115.2 (5)C23—C22—C25—C3021.8 (6)
C3—C2—C5—C10175.7 (4)C21—C22—C25—C30143.1 (4)
C1—C2—C5—C1053.8 (5)C24—C22—C25—C3098.5 (5)
C4—C2—C5—C1064.4 (5)C30—C25—C26—C271.5 (7)
C10—C5—C6—C70.9 (6)C22—C25—C26—C27179.7 (4)
C2—C5—C6—C7179.5 (4)C25—C26—C27—C280.1 (8)
C5—C6—C7—C80.9 (8)C26—C27—C28—C291.0 (9)
C6—C7—C8—C90.2 (8)C27—C28—C29—C300.6 (10)
C7—C8—C9—C100.4 (8)C26—C25—C30—C291.9 (8)
C6—C5—C10—C90.2 (6)C22—C25—C30—C29179.3 (5)
C2—C5—C10—C9179.9 (4)C28—C29—C30—C250.9 (10)
C8—C9—C10—C50.4 (8)Sn1—O1—C31—C32108.0 (4)
O1—Sn1—C11—C12113.5 (3)Sn1—O1—C31—C3775.5 (4)
C21—Sn1—C11—C122.6 (4)O1—C31—C32—C33177.2 (4)
C1—Sn1—C11—C12146.3 (3)C37—C31—C32—C330.6 (6)
Sn1—C11—C12—C1552.1 (4)C31—C32—C33—C340.7 (7)
Sn1—C11—C12—C1472.0 (4)C32—C33—C34—C361.0 (7)
Sn1—C11—C12—C13170.8 (3)C32—C33—C34—C35179.7 (4)
C14—C12—C15—C16169.4 (4)C33—C34—C35—O3177.7 (5)
C11—C12—C15—C1647.3 (5)C36—C34—C35—O31.7 (8)
C13—C12—C15—C1671.0 (5)C33—C34—C36—C371.2 (6)
C14—C12—C15—C2011.7 (5)C35—C34—C36—C37179.4 (4)
C11—C12—C15—C20133.8 (4)C38—O2—C37—C362.4 (6)
C13—C12—C15—C20107.8 (4)C38—O2—C37—C31179.8 (4)
C20—C15—C16—C171.2 (6)C34—C36—C37—O2178.8 (4)
C12—C15—C16—C17179.8 (4)C34—C36—C37—C311.2 (6)
C15—C16—C17—C180.5 (8)O1—C31—C37—O24.7 (5)
C16—C17—C18—C190.2 (8)C32—C31—C37—O2178.8 (4)
C17—C18—C19—C200.0 (8)O1—C31—C37—C36177.4 (4)
C18—C19—C20—C150.9 (7)C32—C31—C37—C360.9 (6)

Experimental details

Crystal data
Chemical formula[Sn(C10H13)3(C8H7O3)]
Mr669.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.7900 (13), 33.761 (4), 10.3073 (13)
β (°) 92.873 (2)
V3)3402.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.859, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
26454, 6675, 5252
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.099, 1.06
No. of reflections6675
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.96

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Sn1—O12.038 (3)Sn1—C112.145 (4)
Sn1—C212.142 (4)Sn1—C12.148 (4)
O1—Sn1—C21106.72 (15)O1—Sn1—C193.83 (14)
O1—Sn1—C11101.37 (13)C21—Sn1—C1115.01 (16)
C21—Sn1—C11118.18 (15)C11—Sn1—C1116.65 (16)
 

Acknowledgements

The author thanks the Science Foundation of Dezhou University for supporting this work.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDomingos, A. M. & Sheldrick, G. M. (1974). Acta Cryst. B30, 519–521.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G.-M., Tan, G.-X., Ding, Y.-J. & Wu, J. (2006). Acta Cryst. E62, m1195–m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H.-J., Tian, L.-J., Mao, W.-T. & Zheng, X.-F. (2007). Acta Cryst. E63, m1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z.-G., Huang, Y.-Q., Zou, Y., Zhang, S.-K. & Xie, Q.-L. (2002). Chem. J. Chin. Univ. 23, 399–402.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds