organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(Tri­fluoro­meth­yl)phen­­oxy]ethyl 1-oxo-2,6,7-trioxa-1λ5-phosphabi­cyclo­[2.2.2]octane-4-carboxyl­ate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 22 November 2007; accepted 4 February 2008; online 13 February 2008)

In the crystal structure of the title compound, C14H14F3O7P, the central chain, which connects the phosphate bicyclic system and the benzene ring, is made up of an approximately planar C—C(O)—O—C(H2) fragment and a C(H2)—O—C(Ph) link; the mean planes make a dihedral angle of 75.9 (2)°. The F atoms are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For industrial and biological applications of heterocyclic compounds involving bicyclic phosphate, see: Ratz (1966[Ratz, R. F. W. (1966). US Patent No. 3 287 448.]); Li et al., (2002[Li, X., Ou, Y. X. & Zhang, Y. H. (2002). Chem. J. Chin. Univ. 23, 695-699.]). Many related derivatives have been prepared by Verkade & Reynolds (1960[Verkade, J. G. & Reynolds, L. J. (1960). J. Org. Chem. 25, 663-667.]) and Sheng & He (2006[Sheng, X. J. & He, H. W. (2006). Acta Cryst. E62, o4398-o4399.]). For the synthesis of the starting material, see: Chen & Jin (2000[Chen, W. Q. & Jin, G. Y. (2000). J. Chin. Appl. Chem. Vol? 479-480.]). For related literature, see: Nimrod et al. (1968[Nimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780-2784.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14F3O7P

  • Mr = 382.22

  • Monoclinic, P 21 /n

  • a = 5.7824 (3) Å

  • b = 27.5060 (16) Å

  • c = 10.2878 (6) Å

  • β = 96.738 (1)°

  • V = 1624.98 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 18233 measured reflections

  • 3547 independent reflections

  • 2332 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.137

  • S = 0.98

  • 3547 reflections

  • 254 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART) and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART) and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Heterocyclic derivatives containing bicyclic phosphate system are important compounds with versatile industrial and biological applications (Ratz, 1966; Li et al., 2002). In continuation of our work on new biologically active heterocyclic derivatives, we report here the crystal structure of the title compound,(I) (Fig.1).Bond lengths and angles of the phosphorus-containing bicyclic cage of (I) are close to those observed previously in similar compounds (Nimrod et al., 1968; Sheng & He, 2006). The central chain of the molecule, which connects phosphate bicyclic system and benzene ring, is made up of approximately planar C4—C5—O6—C6 fragment and C7—O7—C8 link; their mean planes form dihedral angle of 75.9 (2)°.

Related literature top

For industrial and biological applications of heterocyclic compounds involving bicyclic phosphate, see: Ratz (1966); Li et al., (2002). Many related derivatives have been prepared by Verkade & Reynolds (1960) and Sheng & He (2006). For the synthesis of the starting material, see: Chen & Jin (2000).

For related literature, see: Nimrod et al. (1968).

Experimental top

The solution of anhydrous 1-oxo-2,6,7-trioxa-1λ5-phospha-bicyclo[2.2.2] octane-4-carbonyl chloride (Chen & Jin, 2000) (1.14 g, 0.0055 mol) in 5 ml of acetonitrile was added dropwise under stirring to the solution of 2-(3-trifluoromethylphenoxy)ethanol (1.03 g, 0.005 mol) and triethylamine (0.61 g, 0.006 mol) in 25 ml of acetonitrile. The stirring was continued for about 3 h. Then, the solvent was removed under reduced pressure and the residue was washed with water (20 ml). The raw product was recrystallized from acetonitrile, yielding the title compound as a white solid with 81% yield. Colourless crystals of (I) suitable for X-ray structure analysis were grown from the mixture of dichloromethane and n-hexane (v/v, 1:8).

Refinement top

It was apparent at an early stage, that the CF3 group showed rotational disorder, and two alternative positions were revealed for each of the F atoms. Refinement of the s.o.f.'s for the F atoms indicated noticeable differences in occupancies of each of the two orientations of the CF3 group [0.59 (2) versus. 0.41 (2)]. The C—F bond distances were restrained during the refinement using the SADI command (SHELXL97; Sheldrick, 2008). H atoms were included in the refinement in riding model approximation with C—H = 0.93 Å for aromatic and 0.97 Å for all other H atoms; Uiso(H) = 1.2Ueq of the carrier C atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme; the minor component of the CF3 group disorder is omitted. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram for (I).
[Figure 3] Fig. 3. The formation of the title compound, (I).
2-[3-(Trifluoromethyl)phenoxy]ethyl 1-oxo-2,6,7-trioxa-1λ5-phosphabicyclo[2.2.2]octane-4-carboxylate top
Crystal data top
C14H14F3O7PF(000) = 784
Mr = 382.22Dx = 1.562 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4355 reflections
a = 5.7824 (3) Åθ = 2.4–19.3°
b = 27.5060 (16) ŵ = 0.24 mm1
c = 10.2878 (6) ÅT = 295 K
β = 96.738 (1)°Plate, colourless
V = 1624.98 (16) Å30.30 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 27.0°, θmin = 1.5°
ϕ and ω scansh = 77
18233 measured reflectionsk = 3535
3547 independent reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.27 e Å3
30 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H14F3O7PV = 1624.98 (16) Å3
Mr = 382.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7824 (3) ŵ = 0.24 mm1
b = 27.5060 (16) ÅT = 295 K
c = 10.2878 (6) Å0.30 × 0.20 × 0.06 mm
β = 96.738 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2332 reflections with I > 2σ(I)
18233 measured reflectionsRint = 0.091
3547 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05130 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
3547 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3969 (4)0.14250 (8)0.3106 (2)0.0518 (6)
H1A0.53000.13560.37440.062*
H1B0.30310.11330.29850.062*
C20.4076 (4)0.22884 (9)0.3762 (2)0.0502 (6)
H2A0.32540.25520.41340.060*
H2B0.54730.22180.43500.060*
C30.0422 (4)0.19358 (11)0.2599 (2)0.0579 (7)
H3A0.05850.16530.25230.069*
H3B0.04590.22070.28860.069*
C40.2525 (3)0.18376 (8)0.3603 (2)0.0405 (5)
C50.1682 (4)0.16870 (8)0.4885 (2)0.0479 (6)
C60.2903 (5)0.15256 (10)0.7125 (2)0.0630 (7)
H6A0.19080.12410.70300.076*
H6B0.21080.17780.75590.076*
C70.5158 (5)0.14044 (9)0.7905 (2)0.0602 (7)
H7A0.62660.16660.78530.072*
H7B0.49380.13560.88170.072*
C80.8002 (4)0.07776 (9)0.7983 (2)0.0497 (6)
C90.8907 (5)0.03932 (9)0.7345 (2)0.0567 (7)
H90.81380.02810.65570.068*
C101.0948 (5)0.01744 (10)0.7873 (3)0.0665 (8)
C111.2075 (6)0.03407 (13)0.9055 (3)0.0844 (9)
H111.34520.01950.94180.101*
C121.1166 (6)0.07149 (13)0.9678 (3)0.0832 (9)
H121.19330.08241.04690.100*
C130.9127 (5)0.09386 (10)0.9166 (2)0.0657 (7)
H130.85160.11940.96100.079*
C141.1925 (6)0.02293 (13)0.7178 (4)0.0947 (11)
F11.0315 (9)0.0476 (3)0.6324 (13)0.136 (3)0.591 (16)
F21.3280 (17)0.0092 (4)0.6315 (8)0.136 (4)0.591 (16)
F31.295 (3)0.0570 (4)0.7881 (7)0.202 (7)0.591 (16)
F1'1.0849 (18)0.0629 (3)0.7297 (14)0.115 (5)0.409 (16)
F2'1.4149 (10)0.0324 (4)0.7722 (12)0.113 (4)0.409 (16)
F3'1.218 (3)0.0137 (5)0.5991 (8)0.135 (6)0.409 (16)
O10.4623 (3)0.22048 (7)0.00883 (16)0.0676 (5)
O20.4701 (3)0.24307 (6)0.24834 (15)0.0583 (5)
O30.4763 (3)0.15669 (6)0.18650 (16)0.0570 (5)
O40.1178 (3)0.20463 (7)0.13298 (16)0.0661 (5)
O50.0280 (3)0.15716 (8)0.49924 (19)0.0766 (6)
O60.3411 (3)0.16937 (6)0.58442 (16)0.0580 (5)
O70.5992 (3)0.09700 (6)0.73729 (15)0.0592 (5)
P10.38795 (10)0.20768 (2)0.13331 (6)0.0473 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (14)0.0443 (13)0.0594 (15)0.0020 (10)0.0080 (11)0.0002 (11)
C20.0553 (15)0.0499 (13)0.0472 (14)0.0098 (11)0.0134 (11)0.0049 (11)
C30.0347 (13)0.0757 (17)0.0628 (16)0.0004 (11)0.0039 (11)0.0092 (13)
C40.0319 (11)0.0415 (12)0.0478 (13)0.0008 (9)0.0041 (9)0.0008 (9)
C50.0428 (13)0.0444 (13)0.0577 (15)0.0006 (10)0.0116 (12)0.0022 (11)
C60.0696 (18)0.0645 (16)0.0583 (16)0.0197 (13)0.0215 (13)0.0145 (13)
C70.0821 (19)0.0515 (14)0.0485 (14)0.0154 (13)0.0141 (13)0.0017 (11)
C80.0545 (14)0.0476 (13)0.0467 (13)0.0021 (11)0.0042 (11)0.0045 (11)
C90.0610 (16)0.0507 (14)0.0583 (16)0.0001 (12)0.0065 (13)0.0031 (12)
C100.0608 (17)0.0529 (15)0.086 (2)0.0086 (13)0.0088 (16)0.0105 (14)
C110.070 (2)0.086 (2)0.092 (2)0.0152 (17)0.0144 (18)0.018 (2)
C120.085 (2)0.089 (2)0.0686 (19)0.0008 (18)0.0211 (17)0.0045 (17)
C130.083 (2)0.0616 (16)0.0499 (15)0.0021 (14)0.0007 (14)0.0002 (12)
C140.085 (3)0.079 (3)0.120 (3)0.024 (2)0.012 (3)0.001 (2)
F10.126 (4)0.084 (4)0.202 (9)0.010 (3)0.037 (5)0.061 (5)
F20.108 (5)0.159 (6)0.151 (8)0.032 (5)0.055 (5)0.069 (6)
F30.268 (16)0.152 (9)0.190 (7)0.147 (11)0.042 (9)0.040 (6)
F1'0.123 (6)0.066 (5)0.163 (11)0.031 (4)0.044 (7)0.051 (6)
F2'0.062 (4)0.092 (5)0.178 (10)0.033 (3)0.018 (4)0.038 (5)
F3'0.165 (12)0.141 (11)0.099 (5)0.060 (10)0.018 (7)0.018 (6)
O10.0735 (13)0.0802 (13)0.0510 (11)0.0054 (10)0.0153 (9)0.0008 (9)
O20.0748 (12)0.0507 (9)0.0518 (10)0.0220 (8)0.0168 (8)0.0027 (8)
O30.0627 (11)0.0535 (10)0.0572 (11)0.0088 (8)0.0178 (8)0.0041 (8)
O40.0411 (10)0.1008 (14)0.0544 (11)0.0014 (9)0.0035 (8)0.0136 (9)
O50.0527 (11)0.0998 (15)0.0798 (14)0.0187 (10)0.0189 (10)0.0094 (11)
O60.0479 (10)0.0716 (11)0.0551 (10)0.0023 (8)0.0082 (8)0.0188 (9)
O70.0657 (11)0.0579 (10)0.0524 (10)0.0154 (8)0.0006 (8)0.0095 (8)
P10.0443 (4)0.0516 (4)0.0460 (4)0.0027 (3)0.0054 (3)0.0017 (3)
Geometric parameters (Å, º) top
C1—O31.460 (3)C8—O71.361 (3)
C1—C41.532 (3)C8—C91.380 (3)
C1—H1A0.9700C8—C131.384 (3)
C1—H1B0.9700C9—C101.378 (4)
C2—O21.458 (2)C9—H90.9300
C2—C41.528 (3)C10—C111.388 (4)
C2—H2A0.9700C10—C141.469 (5)
C2—H2B0.9700C11—C121.351 (5)
C3—O41.457 (3)C11—H110.9300
C3—C41.525 (3)C12—C131.378 (4)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—H130.9300
C4—C51.516 (3)C14—F3'1.274 (7)
C5—O51.196 (3)C14—F1'1.277 (6)
C5—O61.320 (3)C14—F31.284 (5)
C6—O61.459 (3)C14—F21.307 (6)
C6—C71.487 (3)C14—F2'1.366 (6)
C6—H6A0.9700C14—F11.382 (6)
C6—H6B0.9700O1—P11.4416 (18)
C7—O71.422 (3)O2—P11.5625 (16)
C7—H7A0.9700O3—P11.5689 (17)
C7—H7B0.9700O4—P11.5642 (18)
O3—C1—C4109.50 (18)C9—C10—C11119.6 (3)
O3—C1—H1A109.8C9—C10—C14119.9 (3)
C4—C1—H1A109.8C11—C10—C14120.5 (3)
O3—C1—H1B109.8C12—C11—C10119.9 (3)
C4—C1—H1B109.8C12—C11—H11120.1
H1A—C1—H1B108.2C10—C11—H11120.1
O2—C2—C4109.03 (16)C11—C12—C13121.5 (3)
O2—C2—H2A109.9C11—C12—H12119.3
C4—C2—H2A109.9C13—C12—H12119.3
O2—C2—H2B109.9C12—C13—C8119.1 (3)
C4—C2—H2B109.9C12—C13—H13120.5
H2A—C2—H2B108.3C8—C13—H13120.5
O4—C3—C4110.18 (18)F3'—C14—F1'112.2 (6)
O4—C3—H3A109.6F3'—C14—F3125.9 (8)
C4—C3—H3A109.6F1'—C14—F361.0 (5)
O4—C3—H3B109.6F3'—C14—F231.0 (6)
C4—C3—H3B109.6F1'—C14—F2130.6 (7)
H3A—C3—H3B108.1F3—C14—F2108.7 (5)
C5—C4—C3108.98 (18)F3'—C14—F2'102.7 (6)
C5—C4—C2111.94 (18)F1'—C14—F2'104.0 (5)
C3—C4—C2109.88 (19)F3—C14—F2'44.0 (5)
C5—C4—C1109.37 (18)F2—C14—F2'73.9 (5)
C3—C4—C1109.12 (19)F3'—C14—F168.6 (6)
C2—C4—C1107.51 (18)F1'—C14—F148.5 (4)
O5—C5—O6125.3 (2)F3—C14—F1103.3 (5)
O5—C5—C4124.0 (2)F2—C14—F197.1 (5)
O6—C5—C4110.72 (18)F2'—C14—F1134.3 (5)
O6—C6—C7107.6 (2)F3'—C14—C10114.3 (6)
O6—C6—H6A110.2F1'—C14—C10112.7 (4)
C7—C6—H6A110.2F3—C14—C10117.1 (5)
O6—C6—H6B110.2F2—C14—C10114.0 (5)
C7—C6—H6B110.2F2'—C14—C10110.0 (5)
H6A—C6—H6B108.5F1—C14—C10114.4 (3)
O7—C7—C6107.2 (2)C2—O2—P1115.51 (13)
O7—C7—H7A110.3C1—O3—P1114.91 (13)
C6—C7—H7A110.3C3—O4—P1114.44 (13)
O7—C7—H7B110.3C5—O6—C6117.12 (18)
C6—C7—H7B110.3C8—O7—C7117.31 (18)
H7A—C7—H7B108.5O1—P1—O2115.14 (10)
O7—C8—C9115.4 (2)O1—P1—O4114.40 (10)
O7—C8—C13124.7 (2)O2—P1—O4104.46 (10)
C9—C8—C13119.9 (2)O1—P1—O3114.17 (10)
C10—C9—C8120.1 (2)O2—P1—O3103.61 (9)
C10—C9—H9119.9O4—P1—O3103.71 (10)
C8—C9—H9119.9
O4—C3—C4—C5175.80 (19)C9—C10—C14—F1'76.8 (9)
O4—C3—C4—C261.2 (3)C11—C10—C14—F1'103.7 (9)
O4—C3—C4—C156.4 (3)C9—C10—C14—F3144.7 (10)
O2—C2—C4—C5176.43 (17)C11—C10—C14—F335.8 (11)
O2—C2—C4—C355.2 (2)C9—C10—C14—F286.9 (7)
O2—C2—C4—C163.4 (2)C11—C10—C14—F292.6 (7)
O3—C1—C4—C5179.40 (17)C9—C10—C14—F2'167.6 (7)
O3—C1—C4—C360.3 (2)C11—C10—C14—F2'11.9 (8)
O3—C1—C4—C258.9 (2)C9—C10—C14—F123.6 (8)
C3—C4—C5—O513.7 (3)C11—C10—C14—F1156.9 (7)
C2—C4—C5—O5135.5 (2)C4—C2—O2—P15.5 (2)
C1—C4—C5—O5105.5 (3)C4—C1—O3—P12.6 (2)
C3—C4—C5—O6167.4 (2)C4—C3—O4—P14.5 (3)
C2—C4—C5—O645.6 (3)O5—C5—O6—C62.9 (4)
C1—C4—C5—O673.4 (2)C4—C5—O6—C6175.99 (19)
O6—C6—C7—O771.8 (3)C7—C6—O6—C5161.0 (2)
O7—C8—C9—C10179.5 (2)C9—C8—O7—C7172.2 (2)
C13—C8—C9—C101.0 (4)C13—C8—O7—C78.4 (4)
C8—C9—C10—C110.5 (4)C6—C7—O7—C8176.9 (2)
C8—C9—C10—C14179.0 (3)C2—O2—P1—O1176.46 (15)
C9—C10—C11—C120.0 (5)C2—O2—P1—O457.23 (18)
C14—C10—C11—C12179.5 (3)C2—O2—P1—O351.09 (18)
C10—C11—C12—C130.0 (5)C3—O4—P1—O1177.70 (18)
C11—C12—C13—C80.5 (5)C3—O4—P1—O250.93 (19)
O7—C8—C13—C12179.5 (3)C3—O4—P1—O357.31 (19)
C9—C8—C13—C121.0 (4)C1—O3—P1—O1178.26 (15)
C9—C10—C14—F3'52.8 (10)C1—O3—P1—O255.75 (17)
C11—C10—C14—F3'126.7 (10)C1—O3—P1—O453.13 (17)

Experimental details

Crystal data
Chemical formulaC14H14F3O7P
Mr382.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)5.7824 (3), 27.5060 (16), 10.2878 (6)
β (°) 96.738 (1)
V3)1624.98 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18233, 3547, 2332
Rint0.091
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 0.98
No. of reflections3547
No. of parameters254
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400) and the National Natural Science Foundation of China (No. 20772042).

References

First citationBruker (2000). SMART) and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. Q. & Jin, G. Y. (2000). J. Chin. Appl. Chem. Vol? 479–480.  Google Scholar
First citationLi, X., Ou, Y. X. & Zhang, Y. H. (2002). Chem. J. Chin. Univ. 23, 695–699.  Google Scholar
First citationNimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780–2784.  CSD CrossRef CAS Web of Science Google Scholar
First citationRatz, R. F. W. (1966). US Patent No. 3 287 448.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, X. J. & He, H. W. (2006). Acta Cryst. E62, o4398–o4399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerkade, J. G. & Reynolds, L. J. (1960). J. Org. Chem. 25, 663–667.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds