organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-4-(Tosyl­oxymeth­yl)cyclo­hexa­ne­carboxylic acid

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn

(Received 18 January 2008; accepted 29 January 2008; online 15 February 2008)

The title compound, C15H20O5S, is an inter­mediate in the synthesis of novel amino­carboxylic acid derivatives. The cyclo­hexane ring exhibits a chair conformation. In the crystal structure, adjacent mol­ecules form dimers via O—H⋯O hydrogen bonds.

Related literature

For the use of amino­carboxylic acid derivatives as anti-ulcer agents, see: Hoshina et al. (1984[Hoshina, K., Yamazaki, Y., Takeshita, T. & Naruchi, T. (1984). IUPHAP 9th International Congress of Pharmacology, p. 697. London.]). For related structures, see: Qi et al. (2008[Qi, Q.-R., Huang, W.-C. & Zheng, H. (2008). Acta Cryst. E64, o405.]); van Koningsveld et al. (1972[Koningsveld, H. van (1972). Acta Cryst. B28, 1189-1195.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O5S

  • Mr = 312.37

  • Monoclinic, P 21 /c

  • a = 12.545 (4) Å

  • b = 10.085 (3) Å

  • c = 12.654 (6) Å

  • β = 98.05 (3)°

  • V = 1585.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 (2) K

  • 0.45 × 0.40 × 0.38 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4142 measured reflections

  • 2931 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 250 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.03

  • 2931 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.83 2.642 (3) 173
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some aminocarboxylic acid derivatives are used as anti-ulcer agents (Hoshina et al., 1984). To find new anti-ulcer agents, a series of trans/cis-cyclohexanecarboxylic acid derivatives were designed and synthesized.

In this paper, we want to report the synthesis and structure of the title compound, cis-4-(tosyloxymethyl)cyclohexanecarboxylic acid.

The cyclohexane ring exhibits a chair conformation and the cyclohexane C—C bond lengths and C—C—C endocyclic angles are in the range found for similar compounds (van Koningsveld, 1972) (Fig.1). They agree well with those of trans-4-(tosyloxymethyl)cyclohexanecarboxylic acid (Qi et al., 2008).

In the crystal structure, two molecules form centrosymmetric dimers via O—H···O hydrogen bonds (Fig. 2).

Related literature top

For the use of aminocarboxylic acid derivatives as anti-ulcer agents, see: Hoshina et al. (1984). For related structures, see: Qi et al. (2008); van Koningsveld et al. (1972).

Experimental top

cis-4-(Methoxycarboxyl)cyclohexanemethanol (10 mmol), pyridine (11 mmol) and a small amount of 4-dimethylaminopyridine were dissolved in dichloromethane (20 ml), then p-toluenesulfonyl chloride (11 mmol) was added dropwise with vigorous stirring at room temperature. After 8 h the reaction was quenched by addition of water and the organic layer separated was evaporated under vacuum, the solid obtained was hydrolyzed in a mixed solution of methanol and aqueous NaOH (11 mmol) for 4 h at 323 K. The title compound was then obtained by acidification with hydrochloric acid followed by recrystallization from ethyl acetate. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in ethyl acetate at room temperature.

Refinement top

The H atoms were placed in the calculated positions in the riding model approximation with C—H = 0.93 (aromatic-H) and 0.96 (methyl-H), O—H = 0.82 Å (hydroxyl) and with Uiso(H) = 1.2Ueq(aromatic-C) and 1.5Ueq(methyl-C, hydroxyl). Methyl and hydroxyl H atoms were allowed to rotate around the C—C and C—O axis but not to tilt to best fit the experimental electron density.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
cis-4-(Tosyloxymethyl)cyclohexanecarboxylic acid top
Crystal data top
C15H20O5SF(000) = 664
Mr = 312.37Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.545 (4) ÅCell parameters from 43 reflections
b = 10.085 (3) Åθ = 4.4–7.3°
c = 12.654 (6) ŵ = 0.22 mm1
β = 98.05 (3)°T = 291 K
V = 1585.1 (10) Å3Block, colourless
Z = 40.45 × 0.40 × 0.38 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.6°
Graphite monochromatorh = 1515
ω/2θ scansk = 012
4142 measured reflectionsl = 615
2931 independent reflections3 standard reflections every 250 reflections
1794 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1341P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2931 reflectionsΔρmax = 0.24 e Å3
197 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (15)
Crystal data top
C15H20O5SV = 1585.1 (10) Å3
Mr = 312.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.545 (4) ŵ = 0.22 mm1
b = 10.085 (3) ÅT = 291 K
c = 12.654 (6) Å0.45 × 0.40 × 0.38 mm
β = 98.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
4142 measured reflections3 standard reflections every 250 reflections
2931 independent reflections intensity decay: 0.8%
1794 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2931 reflectionsΔρmin = 0.26 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88825 (5)1.11227 (6)0.13440 (6)0.0571 (2)
O10.86629 (16)1.13334 (18)0.24047 (15)0.0714 (6)
O20.92693 (13)0.96607 (16)0.12094 (14)0.0587 (5)
O30.96662 (14)1.19132 (18)0.09296 (16)0.0734 (6)
O40.61080 (15)0.4878 (2)0.08885 (17)0.0756 (6)
O50.60020 (17)0.5097 (3)0.08567 (17)0.0921 (7)
H50.53560.50950.08120.138*
C10.6708 (2)1.1419 (3)0.0859 (2)0.0655 (7)
H10.66891.14570.15910.079*
C20.5771 (2)1.1563 (3)0.0140 (3)0.0768 (9)
H20.51221.17060.03990.092*
C30.5778 (2)1.1499 (3)0.0942 (3)0.0718 (8)
C40.6745 (3)1.1276 (3)0.1305 (2)0.0744 (8)
H40.67631.12140.20350.089*
C50.7684 (2)1.1143 (3)0.0613 (2)0.0673 (7)
H5A0.83311.10020.08760.081*
C60.7667 (2)1.1218 (2)0.0466 (2)0.0517 (6)
C70.4746 (3)1.1693 (4)0.1705 (3)0.1080 (12)
H7A0.41731.19200.13090.162*
H7B0.45691.08870.20940.162*
H7C0.48431.23940.21960.162*
C80.8744 (2)0.8621 (2)0.1757 (2)0.0574 (7)
H8A0.80050.88700.18020.069*
H8B0.91160.85090.24770.069*
C90.87667 (18)0.7337 (2)0.11476 (18)0.0475 (6)
H90.95160.71400.10650.057*
C100.8351 (2)0.6228 (2)0.1803 (2)0.0537 (6)
H10A0.88000.61700.24900.064*
H10B0.76230.64340.19260.064*
C110.8356 (2)0.4903 (2)0.1233 (2)0.0628 (7)
H11A0.90950.46430.12010.075*
H11B0.80360.42370.16440.075*
C120.7748 (2)0.4936 (3)0.0110 (2)0.0618 (7)
H120.79140.41110.02420.074*
C130.8138 (2)0.6083 (3)0.0531 (2)0.0620 (7)
H13A0.88690.59050.06590.074*
H13B0.76870.61380.12180.074*
C140.81088 (19)0.7401 (2)0.00422 (18)0.0509 (6)
H14A0.73690.76270.01080.061*
H14B0.83960.80900.03730.061*
C150.6550 (2)0.4981 (2)0.0095 (2)0.0608 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0529 (4)0.0520 (4)0.0648 (5)0.0071 (3)0.0025 (3)0.0085 (3)
O10.0762 (13)0.0768 (13)0.0589 (12)0.0026 (10)0.0017 (10)0.0190 (9)
O20.0526 (10)0.0551 (10)0.0697 (12)0.0066 (8)0.0133 (9)0.0022 (8)
O30.0561 (12)0.0641 (11)0.0990 (15)0.0186 (9)0.0074 (10)0.0001 (10)
O40.0562 (12)0.1058 (16)0.0645 (13)0.0209 (10)0.0070 (10)0.0001 (11)
O50.0640 (13)0.139 (2)0.0713 (14)0.0219 (14)0.0036 (11)0.0193 (13)
C10.0573 (17)0.0739 (18)0.0659 (18)0.0063 (14)0.0111 (15)0.0126 (14)
C20.0484 (17)0.091 (2)0.091 (2)0.0003 (15)0.0110 (16)0.0210 (18)
C30.0640 (19)0.0699 (18)0.077 (2)0.0004 (14)0.0058 (17)0.0145 (15)
C40.076 (2)0.089 (2)0.0558 (18)0.0038 (17)0.0018 (16)0.0006 (15)
C50.0593 (17)0.0799 (19)0.0640 (19)0.0029 (14)0.0128 (15)0.0006 (14)
C60.0525 (15)0.0462 (13)0.0558 (15)0.0047 (11)0.0055 (12)0.0056 (11)
C70.077 (2)0.130 (3)0.106 (3)0.012 (2)0.025 (2)0.018 (2)
C80.0589 (16)0.0625 (16)0.0506 (15)0.0092 (12)0.0071 (13)0.0009 (12)
C90.0410 (13)0.0525 (13)0.0482 (14)0.0033 (11)0.0035 (11)0.0020 (11)
C100.0464 (14)0.0613 (15)0.0517 (14)0.0021 (12)0.0010 (11)0.0106 (12)
C110.0499 (15)0.0558 (15)0.082 (2)0.0018 (12)0.0072 (14)0.0111 (13)
C120.0616 (17)0.0529 (14)0.0721 (19)0.0055 (12)0.0138 (14)0.0088 (12)
C130.0559 (15)0.0810 (18)0.0511 (15)0.0119 (14)0.0144 (13)0.0095 (14)
C140.0487 (14)0.0576 (14)0.0466 (14)0.0070 (11)0.0070 (11)0.0062 (11)
C150.0596 (17)0.0564 (15)0.0647 (19)0.0165 (13)0.0023 (15)0.0002 (13)
Geometric parameters (Å, º) top
S1—O31.4218 (18)C7—H7C0.9600
S1—O11.423 (2)C8—C91.510 (3)
S1—O21.5688 (18)C8—H8A0.9700
S1—C61.759 (3)C8—H8B0.9700
O2—C81.464 (3)C9—C141.523 (3)
O4—C151.217 (3)C9—C101.526 (3)
O5—C151.306 (3)C9—H90.9800
O5—H50.8200C10—C111.519 (3)
C1—C61.380 (4)C10—H10A0.9700
C1—C21.390 (4)C10—H10B0.9700
C1—H10.9300C11—C121.516 (4)
C2—C31.372 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.374 (4)C12—C151.501 (4)
C3—C71.515 (4)C12—C131.532 (4)
C4—C51.372 (4)C12—H120.9800
C4—H40.9300C13—C141.517 (3)
C5—C61.371 (4)C13—H13A0.9700
C5—H5A0.9300C13—H13B0.9700
C7—H7A0.9600C14—H14A0.9700
C7—H7B0.9600C14—H14B0.9700
O3—S1—O1119.95 (12)C8—C9—C10108.55 (19)
O3—S1—O2104.28 (11)C14—C9—C10110.34 (18)
O1—S1—O2110.26 (11)C8—C9—H9108.4
O3—S1—C6108.65 (12)C14—C9—H9108.4
O1—S1—C6108.78 (13)C10—C9—H9108.4
O2—S1—C6103.69 (10)C11—C10—C9111.2 (2)
C8—O2—S1117.09 (15)C11—C10—H10A109.4
C15—O5—H5109.5C9—C10—H10A109.4
C6—C1—C2118.7 (3)C11—C10—H10B109.4
C6—C1—H1120.7C9—C10—H10B109.4
C2—C1—H1120.7H10A—C10—H10B108.0
C3—C2—C1121.7 (3)C12—C11—C10113.0 (2)
C3—C2—H2119.2C12—C11—H11A109.0
C1—C2—H2119.2C10—C11—H11A109.0
C2—C3—C4118.1 (3)C12—C11—H11B109.0
C2—C3—C7120.3 (3)C10—C11—H11B109.0
C4—C3—C7121.6 (3)H11A—C11—H11B107.8
C5—C4—C3121.5 (3)C15—C12—C11112.6 (2)
C5—C4—H4119.3C15—C12—C13111.4 (2)
C3—C4—H4119.3C11—C12—C13110.9 (2)
C6—C5—C4119.9 (3)C15—C12—H12107.2
C6—C5—H5A120.1C11—C12—H12107.2
C4—C5—H5A120.1C13—C12—H12107.2
C5—C6—C1120.2 (3)C14—C13—C12112.2 (2)
C5—C6—S1119.5 (2)C14—C13—H13A109.2
C1—C6—S1120.2 (2)C12—C13—H13A109.2
C3—C7—H7A109.5C14—C13—H13B109.2
C3—C7—H7B109.5C12—C13—H13B109.2
H7A—C7—H7B109.5H13A—C13—H13B107.9
C3—C7—H7C109.5C13—C14—C9110.81 (19)
H7A—C7—H7C109.5C13—C14—H14A109.5
H7B—C7—H7C109.5C9—C14—H14A109.5
O2—C8—C9109.29 (19)C13—C14—H14B109.5
O2—C8—H8A109.8C9—C14—H14B109.5
C9—C8—H8A109.8H14A—C14—H14B108.1
O2—C8—H8B109.8O4—C15—O5121.8 (3)
C9—C8—H8B109.8O4—C15—C12123.9 (3)
H8A—C8—H8B108.3O5—C15—C12114.3 (3)
C8—C9—C14112.73 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.821.832.642 (3)173
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H20O5S
Mr312.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)12.545 (4), 10.085 (3), 12.654 (6)
β (°) 98.05 (3)
V3)1585.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.40 × 0.38
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4142, 2931, 1794
Rint0.004
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.03
No. of reflections2931
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.821.832.642 (3)173.0
Symmetry code: (i) x+1, y+1, z.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.  Google Scholar
First citationHoshina, K., Yamazaki, Y., Takeshita, T. & Naruchi, T. (1984). IUPHAP 9th International Congress of Pharmacology, p. 697. London.  Google Scholar
First citationKoningsveld, H. van (1972). Acta Cryst. B28, 1189–1195.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationQi, Q.-R., Huang, W.-C. & Zheng, H. (2008). Acta Cryst. E64, o405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds