organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-1-propyl­pyrrolidinium chloride

aSchool of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
*Correspondence e-mail: pamela.dean@sci.monash.edu.au

(Received 15 February 2008; accepted 24 February 2008; online 29 February 2008)

The aymmetric unit of the title compound, C8H18N+·Cl, consists of one crystallographically independent 1-methyl-1-propyl­pyrrolidinium cation and one chloride anion, both of which lie in general positions. Minor hydrogen-bonded C—H⋯Cl inter­actions occur. However, no classical hydrogen bonding is observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For comparative thermal and crystallographic analysis of four crystallized N-alkyl-N-methyl­pyrrolidinium and piperidinium bis­(trifluoro­methane­sulfon­yl)imide salts and an insight into why these salts form room-temperature ionic liquids, see: Henderson et al. (2006[Henderson, W. A., Young, V. G., Pearson, W., Passerini, S., De Long, H. C. & Trulove, P. C. (2006). J. Phys. Condens. Matter, 18, 10377-10390.]). For the synthesis and analysis of N-butyl-N-methyl pyrrolidinium chloride, an analogue of the title compound, see: Lancaster et al. (2002[Lancaster, N. L., Salter, P. A., Welton, T. & Young, G. B. (2002). J. Org. Chem. 67, 8855-8861.]). For the first synthesis and analysis of the new pyrrolidinium family of molten salts, see: MacFarlane et al. (1999[MacFarlane, D. R., Meakin, P., Sun, J., Amini, N. & Forsyth, M. (1999). J. Phys. Chem. B, 103, 4164-4170.]). For the quanti­tative comparison of inter­molecular inter­actions using Hirshfeld surfaces, see: McKinnon et al. (2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). For the first synthesis and analysis of 1-alkyl-2-methyl pyrrolidinium ionic liquids involving the bis­(trifluoro­methane­sulfon­yl)imide anion, see: Sun et al. (2003[Sun, J., Forsyth, M. & MacFarlane, D. R. (2003). Electrochim. Acta, 48, 1707-1717.]).

[Scheme 1]

Experimental

Crystal data
  • C8H18N+·Cl

  • Mr = 163.68

  • Orthorhombic, P b c n

  • a = 14.5863 (5) Å

  • b = 13.2196 (4) Å

  • c = 9.9779 (3) Å

  • V = 1923.99 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 123 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.907

  • 11550 measured reflections

  • 1982 independent reflections

  • 1800 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.04

  • 1982 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl1i 0.99 2.79 3.607 (1) 141
C2—H2A⋯Cl1ii 0.99 2.77 3.630 (2) 146
C5—H5A⋯Cl1 0.98 2.77 3.648 (1) 149
C5—H5C⋯Cl1iii 0.98 2.71 3.656 (1) 163
C6—H6A⋯Cl1i 0.99 2.76 3.672 (1) 153
C6—H6B⋯Cl1 0.99 2.77 3.666 (1) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: POV-RAY (Persistence of Vision, 2003[Persistence of Vision (2003). Persistence of Vision Raytracer POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/download/ .]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is commonly used as a precursor in ionic liquid synthesis (MacFarlane et al., 1999, Sun et al., 2003). Pyrrolidinium-based ionic liquids have been a subject of intense investigation recently (Henderson et al., 2006), whereby with understanding of the fundamental molecular-level interactions, a desired product with predicted physico-chemical properites could be designed. Additionally, a particular emphasis has been placed on whether hydrogen bonding occurs between the cation and a potential electron-pair donor (hydrogen bond acceptor) and its influence on the ionic liquids' overall properties. This paper briefly reports the structural determination and analysis of 1-methyl-1-propyl pyrrolidinium chloride (Figure 1).

The bond distances and angles of the pyrrolidinium cation are all within normal ranges (as is tabulated in Allen et al., 1987), with the propyl substituent adopting the energetically preferred anti conformation (torsional angle N1—C6—C7—C8: -177.0 (2) °) and the ring adopting the energetically preferred envelope (Cs) conformation. The extended structure packs in layers of groups of anions and cations (Figure 2) which are interconnected by an extended network of weak hydrogen bonds (C—H···Cl interactions), where each cation is hydrogen bonded to four anions and each anion is weakly hydrogen bonded to four cations [C1—H1B···Cl1i [3.607 (2) Å], C2—H2A···Cl1ii [3.630 (2) Å], C5— H5A ··· Cl1 [3.648 (1) Å], C5—H5C···Cl1iii [3.656 (1) Å], C6—H6A···Cl1i [3.672 (2) Å] and C6— H6B···Cl1 [3.666 (1) Å] (symmetry operators: i=1/2 - x,3/2 - y,1/2 + z; ii=1 - x,y,1/2 - z; iii=x,2 - y,1/2 + z) -see Table 1]. Analysis of the salts' Hirshfeld surface, reveals that the short range inter-cationic H—H intermolecular contact contribution to the Hirshfeld surface area predominates (McKinnon et al., 2007).

Related literature top

For bond-length data, see: Allen et al. (1987). For comparative thermal and crystallographic analysis of four crystallized N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide salts and an insight into why these salts form room-temperature ionic liquids, see: Henderson et al. (2006). For the synthesis and analysis of N-butyl-N-methyl pyrrolidinium chloride, an analogue of the title compound, see: Lancaster et al. (2002). MacFarlane et al. (1999) describes the first synthesis and analysis of the new pyrrolidinium family of molten salts. McKinnon et al. (2007) describes the quantitative comparison of intermolecular interactions using Hirshfeld surfaces. Sun et al. (2003) describes the first synthesis and analysis of 1-alkyl-2-methyl pyrrolidinium ionic liquids involving the bis(trifluoromethanesulfonyl)imide anion.

Experimental top

The compound was synthesized following the procedure of Lancaster et al. (2002) for the analogous N-butyl-N-methyl pyrrolidinium chloride species: 1-methyl-1-propylpyrrolidinium chloride was synthesized by heating a solution of chloropropane (28 ml, 0.315 moles) and methyl pyrrolidine (20 ml, 0.287 moles) in 2-propanol at 323 K under nitrogen for 48 h. The resultant white solid was recrystallized from 2-propanol at 273 K. Crystals resulted after 2 days. Crystals were coated with Paratone N oil (Exxon Chemical Co., TX, USA) immediately after isolation and cooled in a stream of nitrogen vapour on the diffractometer. Melting point: 323.5 K.

Refinement top

All H atoms were initially located in a difference Fourier map. Thereafter, all H atoms were placed in geometrically fixed idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: POV-RAY (Persistence of Vision, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the unique component of (I) shown with 50% thermal ellipsoids and hydrogen atoms as spheres of arbitrary size.
[Figure 2] Fig. 2. Extended packing diagram of the unit-cell contents of (I) as viewed down the b axis.
1-Methyl-1-propylpyrrolidinium chloride top
Crystal data top
C8H18N+·ClDx = 1.130 Mg m3
Mr = 163.68Melting point: 323.5 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4825 reflections
a = 14.5863 (5) Åθ = 2.8–26.4°
b = 13.2196 (4) ŵ = 0.33 mm1
c = 9.9779 (3) ÅT = 123 K
V = 1923.99 (11) Å3Cubic, colourless
Z = 80.30 × 0.30 × 0.30 mm
F(000) = 720
Data collection top
Bruker X8 APEX KappaCCD
diffractometer
1982 independent reflections
Radiation source: fine-focus sealed tube1800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
0.5° frames in ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.907, Tmax = 0.907k = 1516
11550 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.834P]
where P = (Fo2 + 2Fc2)/3
1982 reflections(Δ/σ)max = 0.001
93 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H18N+·ClV = 1923.99 (11) Å3
Mr = 163.68Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 14.5863 (5) ŵ = 0.33 mm1
b = 13.2196 (4) ÅT = 123 K
c = 9.9779 (3) Å0.30 × 0.30 × 0.30 mm
Data collection top
Bruker X8 APEX KappaCCD
diffractometer
1982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1800 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.907Rint = 0.030
11550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
1982 reflectionsΔρmin = 0.20 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36024 (2)0.82436 (2)0.05218 (3)0.02423 (12)
N10.32912 (7)0.86923 (8)0.43497 (10)0.0179 (2)
C10.35707 (9)0.75928 (10)0.41992 (14)0.0241 (3)
H1A0.39390.74960.33760.029*
H1B0.30230.71520.41520.029*
C20.41390 (11)0.73488 (12)0.54424 (15)0.0323 (3)
H2A0.47930.72680.52020.039*
H2B0.39220.67140.58630.039*
C30.40131 (10)0.82444 (12)0.64053 (15)0.0309 (3)
H3A0.38840.80040.73260.037*
H3B0.45690.86740.64230.037*
C40.32014 (9)0.88251 (11)0.58455 (13)0.0242 (3)
H4A0.26160.85400.61740.029*
H4B0.32340.95490.60970.029*
C50.40372 (8)0.93610 (10)0.38042 (13)0.0209 (3)
H5A0.40450.93150.28240.031*
H5B0.46310.91410.41610.031*
H5C0.39221.00630.40720.031*
C60.23958 (8)0.88722 (10)0.36358 (13)0.0198 (3)
H6A0.19410.83740.39620.024*
H6B0.24870.87500.26660.024*
C70.20062 (9)0.99281 (11)0.38223 (14)0.0254 (3)
H7A0.19311.00730.47890.031*
H7B0.24331.04340.34420.031*
C80.10858 (10)0.99984 (12)0.31221 (18)0.0372 (4)
H8A0.11730.99260.21530.056*
H8B0.08061.06570.33130.056*
H8C0.06830.94580.34470.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02343 (18)0.02619 (19)0.02308 (18)0.00399 (13)0.00151 (13)0.00178 (12)
N10.0162 (5)0.0191 (5)0.0185 (5)0.0015 (4)0.0013 (4)0.0004 (4)
C10.0246 (7)0.0178 (6)0.0299 (7)0.0005 (5)0.0008 (6)0.0012 (5)
C20.0282 (7)0.0287 (8)0.0401 (9)0.0006 (6)0.0051 (6)0.0123 (6)
C30.0273 (7)0.0406 (9)0.0247 (7)0.0068 (6)0.0067 (6)0.0100 (6)
C40.0232 (6)0.0322 (8)0.0172 (6)0.0044 (6)0.0004 (5)0.0005 (5)
C50.0163 (6)0.0223 (7)0.0241 (6)0.0031 (5)0.0008 (5)0.0023 (5)
C60.0157 (6)0.0231 (6)0.0206 (6)0.0019 (5)0.0035 (5)0.0014 (5)
C70.0208 (6)0.0257 (7)0.0298 (7)0.0018 (5)0.0037 (6)0.0049 (6)
C80.0258 (7)0.0314 (8)0.0543 (10)0.0050 (6)0.0138 (7)0.0065 (7)
Geometric parameters (Å, º) top
N1—C51.5038 (16)C4—H4B0.9900
N1—C61.5066 (16)C5—H5A0.9800
N1—C41.5085 (16)C5—H5B0.9800
N1—C11.5171 (17)C5—H5C0.9800
C1—C21.526 (2)C6—C71.5185 (18)
C1—H1A0.9900C6—H6A0.9900
C1—H1B0.9900C6—H6B0.9900
C2—C31.536 (2)C7—C81.5163 (19)
C2—H2A0.9900C7—H7A0.9900
C2—H2B0.9900C7—H7B0.9900
C3—C41.518 (2)C8—H8A0.9800
C3—H3A0.9900C8—H8B0.9800
C3—H3B0.9900C8—H8C0.9800
C4—H4A0.9900
C5—N1—C6111.31 (10)N1—C4—H4B111.0
C5—N1—C4110.64 (10)C3—C4—H4B111.0
C6—N1—C4111.98 (10)H4A—C4—H4B109.0
C5—N1—C1109.44 (10)N1—C5—H5A109.5
C6—N1—C1109.72 (10)N1—C5—H5B109.5
C4—N1—C1103.46 (10)H5A—C5—H5B109.5
N1—C1—C2105.54 (11)N1—C5—H5C109.5
N1—C1—H1A110.6H5A—C5—H5C109.5
C2—C1—H1A110.6H5B—C5—H5C109.5
N1—C1—H1B110.6N1—C6—C7114.30 (10)
C2—C1—H1B110.6N1—C6—H6A108.7
H1A—C1—H1B108.8C7—C6—H6A108.7
C1—C2—C3106.30 (12)N1—C6—H6B108.7
C1—C2—H2A110.5C7—C6—H6B108.7
C3—C2—H2A110.5H6A—C6—H6B107.6
C1—C2—H2B110.5C8—C7—C6109.34 (11)
C3—C2—H2B110.5C8—C7—H7A109.8
H2A—C2—H2B108.7C6—C7—H7A109.8
C4—C3—C2104.66 (11)C8—C7—H7B109.8
C4—C3—H3A110.8C6—C7—H7B109.8
C2—C3—H3A110.8H7A—C7—H7B108.3
C4—C3—H3B110.8C7—C8—H8A109.5
C2—C3—H3B110.8C7—C8—H8B109.5
H3A—C3—H3B108.9H8A—C8—H8B109.5
N1—C4—C3103.74 (11)C7—C8—H8C109.5
N1—C4—H4A111.0H8A—C8—H8C109.5
C3—C4—H4A111.0H8B—C8—H8C109.5
C5—N1—C1—C285.97 (12)C1—N1—C4—C340.98 (12)
C6—N1—C1—C2151.63 (11)C2—C3—C4—N133.99 (14)
C4—N1—C1—C231.99 (13)C5—N1—C6—C763.82 (14)
N1—C1—C2—C310.96 (15)C4—N1—C6—C760.62 (14)
C1—C2—C3—C414.09 (15)C1—N1—C6—C7174.90 (11)
C5—N1—C4—C376.14 (13)N1—C6—C7—C8177.02 (12)
C6—N1—C4—C3159.05 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.992.793.607 (1)141
C2—H2A···Cl1ii0.992.773.630 (2)146
C5—H5A···Cl10.982.773.648 (1)149
C5—H5C···Cl1iii0.982.713.656 (1)163
C6—H6A···Cl1i0.992.763.672 (1)153
C6—H6B···Cl10.992.773.666 (1)151
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H18N+·Cl
Mr163.68
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)123
a, b, c (Å)14.5863 (5), 13.2196 (4), 9.9779 (3)
V3)1923.99 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker X8 APEX KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.907, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
11550, 1982, 1800
Rint0.030
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.04
No. of reflections1982
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), POV-RAY (Persistence of Vision, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.992.793.607 (1)141
C2—H2A···Cl1ii0.992.773.630 (2)146
C5—H5A···Cl10.982.773.648 (1)149
C5—H5C···Cl1iii0.982.713.656 (1)163
C6—H6A···Cl1i0.992.763.672 (1)153
C6—H6B···Cl10.992.773.666 (1)151
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+2, z+1/2.
 

Acknowledgements

PMD is grateful to Monash University for the Monash Graduate Scholarship and Monash International Postgraduate Research Scholarship. The Australian Research Council is thanked for a QEII fellowship for JMP.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHenderson, W. A., Young, V. G., Pearson, W., Passerini, S., De Long, H. C. & Trulove, P. C. (2006). J. Phys. Condens. Matter, 18, 10377–10390.  Web of Science CSD CrossRef CAS Google Scholar
First citationLancaster, N. L., Salter, P. A., Welton, T. & Young, G. B. (2002). J. Org. Chem. 67, 8855–8861.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacFarlane, D. R., Meakin, P., Sun, J., Amini, N. & Forsyth, M. (1999). J. Phys. Chem. B, 103, 4164–4170.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPersistence of Vision (2003). Persistence of Vision Raytracer POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/download/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Forsyth, M. & MacFarlane, D. R. (2003). Electrochim. Acta, 48, 1707–1717.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds