organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-(Phen­oxy­meth­yl)cyclo­hexane­carboxylic acid

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Pharmaceuticals and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn

(Received 17 January 2008; accepted 18 March 2008; online 29 March 2008)

The title compound, C14H18O3, is an important model compound in the synthesis of phenolic ethers. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Dunitz & Strickler (1966[Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290-291.]); Sekera & Marvel (1933[Sekera, V. C. & Marvel, C. S. (1933). J. Am. Chem. Soc. B55, 345-349.]); Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18O3

  • Mr = 234.28

  • Monoclinic, P 21 /c

  • a = 6.178 (3) Å

  • b = 35.042 (8) Å

  • c = 6.526 (3) Å

  • β = 113.93 (4)°

  • V = 1291.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.45 × 0.25 × 0.24 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2657 measured reflections

  • 2330 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.001

  • 3 standard reflections every 250 reflections intensity decay: 1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.149

  • S = 0.97

  • 2330 reflections

  • 156 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.83 2.626 (10) 164
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To compare the activity of 4-chloromethyl cyclohexane and 4-(tosyloxymethyl)cyclohexane, some cyclohexane derivatives were designed to be linked to substituted phenol. Thus the title compound, a trans-4-(phenoxymethyl)cyclohexanecarboxylic acid was synthesized (Sekera & Marvel,1933). We report here the crystal structure of the title compound. The cyclohexane ring of the title compound adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (12) Å, is similar to that of trans-1,4-cyclohexanedicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 110.9 (8)°, which is in the range observed for cyclohexane rings (111.4 (4)°, Dunitz & Strickler, 1966).

Related literature top

For related literature, see: Dunitz & Strickler (1966); Sekera & Marvel (1933); Luger et al. (1972).

Experimental top

Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate(3.26 g, 10 mmol), phenol(2.82 g, 30 mmol) and potassium phosphate(10.6 g, 50 mmol) were suspended in dry DMF(20 mL) and heated at 368 K for 6 h, then 30 mL water and 30 mL toluene were added to the mixture. The water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and concentration, the crude product was obtained which was further purified by silica gel column chromatography to give pure methyl ester. The ester was hydrolyzed in a mixed solution of 10 mL e thanol and 15 mL 1 N NaOH solution for 5 h at 313 K, after cooling and acidification with hydrochloride the white solid precipitated was collected. Colorless crystals were obtained by slow evaporation in a ethanol-water(4:1) solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
trans-4-(Phenoxymethyl)cyclohexanecarboxylic acid top
Crystal data top
C14H18O3F(000) = 504
Mr = 234.28Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.178 (3) ÅCell parameters from 30 reflections
b = 35.042 (8) Åθ = 4.5–9.5°
c = 6.526 (3) ŵ = 0.08 mm1
β = 113.93 (4)°T = 292 K
V = 1291.4 (9) Å3Block, colourless
Z = 40.45 × 0.25 × 0.24 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.001
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 3.5°
Graphite monochromatorh = 76
ω/2–θ scansk = 042
2657 measured reflectionsl = 17
2330 independent reflections3 standard reflections every 250 reflections
1301 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0395P)2]
where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.17 e Å3
9 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H18O3V = 1291.4 (9) Å3
Mr = 234.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.178 (3) ŵ = 0.08 mm1
b = 35.042 (8) ÅT = 292 K
c = 6.526 (3) Å0.45 × 0.25 × 0.24 mm
β = 113.93 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.001
2657 measured reflections3 standard reflections every 250 reflections
2330 independent reflections intensity decay: 1.8%
1301 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0729 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.97Δρmax = 0.17 e Å3
2330 reflectionsΔρmin = 0.17 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5351 (13)0.8410 (2)0.0641 (11)0.084 (2)
O21.0653 (15)0.9709 (3)0.8119 (13)0.110 (3)
H21.11660.98700.91150.132*
O30.7287 (14)0.9889 (2)0.8198 (11)0.104 (3)
C10.584 (2)0.8016 (3)0.328 (2)0.087 (4)
H10.74440.80120.23540.105*
C20.494 (4)0.7816 (4)0.531 (3)0.112 (6)
H2A0.59710.76800.57580.134*
C30.260 (4)0.7818 (4)0.662 (3)0.117 (6)
H30.20300.76790.79510.141*
C40.103 (3)0.8026 (4)0.6030 (19)0.102 (5)
H40.05710.80320.69620.123*
C50.192 (3)0.8225 (3)0.3991 (19)0.085 (4)
H50.08930.83600.35430.102*
C60.425 (3)0.8221 (3)0.268 (2)0.074 (4)
C70.3845 (19)0.8640 (3)0.0058 (16)0.080 (4)
H7A0.26530.84830.02570.096*
H7B0.30520.88340.10600.096*
C80.5426 (19)0.8826 (3)0.2262 (15)0.062 (3)
H80.63100.86250.33140.074*
C90.3865 (17)0.9033 (3)0.3227 (15)0.076 (4)
H9A0.29120.92230.21630.092*
H9B0.28020.88520.34600.092*
C100.5351 (19)0.9225 (3)0.5425 (15)0.076 (4)
H10A0.43230.93600.59750.092*
H10B0.62100.90330.65240.092*
C110.7078 (19)0.9501 (3)0.5158 (16)0.066 (3)
H110.61430.96890.40370.079*
C120.8661 (18)0.9296 (3)0.4193 (15)0.075 (3)
H12A0.97040.94800.39420.091*
H12B0.96350.91080.52610.091*
C130.7164 (19)0.9100 (3)0.2005 (16)0.077 (3)
H13A0.63100.92920.08980.092*
H13B0.81910.89640.14600.092*
C140.842 (2)0.9717 (4)0.7277 (17)0.073 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (6)0.090 (6)0.065 (5)0.001 (5)0.040 (5)0.021 (5)
O20.103 (7)0.143 (9)0.085 (6)0.002 (7)0.040 (6)0.046 (5)
O30.109 (7)0.127 (8)0.083 (6)0.020 (6)0.046 (5)0.031 (5)
C10.120 (12)0.073 (9)0.093 (9)0.000 (8)0.068 (9)0.004 (8)
C20.179 (18)0.097 (12)0.102 (12)0.012 (13)0.100 (13)0.017 (10)
C30.20 (2)0.099 (12)0.078 (11)0.008 (14)0.078 (13)0.007 (9)
C40.152 (14)0.093 (11)0.070 (9)0.011 (10)0.052 (10)0.013 (8)
C50.114 (12)0.088 (10)0.058 (8)0.000 (9)0.038 (8)0.009 (8)
C60.108 (12)0.063 (9)0.063 (8)0.000 (9)0.045 (9)0.002 (7)
C70.098 (9)0.090 (9)0.066 (7)0.006 (8)0.049 (7)0.010 (7)
C80.080 (8)0.056 (8)0.051 (6)0.001 (7)0.029 (6)0.004 (6)
C90.088 (9)0.095 (10)0.061 (7)0.013 (7)0.045 (7)0.013 (7)
C100.096 (9)0.090 (9)0.062 (7)0.025 (8)0.052 (7)0.021 (7)
C110.084 (9)0.065 (8)0.050 (6)0.005 (7)0.030 (6)0.010 (6)
C120.088 (9)0.079 (9)0.067 (7)0.012 (7)0.039 (7)0.011 (7)
C130.089 (9)0.098 (10)0.059 (7)0.013 (8)0.044 (7)0.017 (7)
C140.068 (9)0.102 (10)0.055 (7)0.013 (9)0.030 (7)0.004 (7)
Geometric parameters (Å, º) top
O1—C61.394 (12)C7—H7B0.9700
O1—C71.438 (10)C8—C131.501 (12)
O2—C141.261 (11)C8—C91.532 (11)
O2—H20.8200C8—H80.9800
O3—C141.248 (11)C9—C101.512 (12)
C1—C61.392 (14)C9—H9A0.9700
C1—C21.401 (16)C9—H9B0.9700
C1—H10.9300C10—C111.501 (12)
C2—C31.350 (18)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—C41.386 (17)C11—C141.497 (13)
C3—H30.9300C11—C121.540 (12)
C4—C51.402 (13)C11—H110.9800
C4—H40.9300C12—C131.514 (12)
C5—C61.341 (14)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C7—C81.519 (12)C13—H13A0.9700
C7—H7A0.9700C13—H13B0.9700
C6—O1—C7116.2 (9)C10—C9—H9A109.4
C14—O2—H2109.5C8—C9—H9A109.4
C6—C1—C2118.1 (14)C10—C9—H9B109.4
C6—C1—H1120.9C8—C9—H9B109.4
C2—C1—H1120.9H9A—C9—H9B108.0
C3—C2—C1120.5 (16)C11—C10—C9111.3 (8)
C3—C2—H2A119.8C11—C10—H10A109.4
C1—C2—H2A119.8C9—C10—H10A109.4
C2—C3—C4121.1 (16)C11—C10—H10B109.4
C2—C3—H3119.5C9—C10—H10B109.4
C4—C3—H3119.5H10A—C10—H10B108.0
C3—C4—C5118.5 (14)C14—C11—C10111.9 (8)
C3—C4—H4120.7C14—C11—C12114.1 (10)
C5—C4—H4120.7C10—C11—C12110.2 (8)
C6—C5—C4120.3 (12)C14—C11—H11106.7
C6—C5—H5119.8C10—C11—H11106.7
C4—C5—H5119.8C12—C11—H11106.7
C5—C6—C1121.5 (12)C13—C12—C11110.5 (9)
C5—C6—O1125.9 (11)C13—C12—H12A109.5
C1—C6—O1112.7 (13)C11—C12—H12A109.5
O1—C7—C8106.9 (9)C13—C12—H12B109.5
O1—C7—H7A110.3C11—C12—H12B109.5
C8—C7—H7A110.3H12A—C12—H12B108.1
O1—C7—H7B110.3C8—C13—C12112.1 (7)
C8—C7—H7B110.3C8—C13—H13A109.2
H7A—C7—H7B108.6C12—C13—H13A109.2
C13—C8—C7112.5 (8)C8—C13—H13B109.2
C13—C8—C9109.9 (8)C12—C13—H13B109.2
C7—C8—C9108.8 (9)H13A—C13—H13B107.9
C13—C8—H8108.5O3—C14—O2122.0 (11)
C7—C8—H8108.5O3—C14—C11118.6 (11)
C9—C8—H8108.5O2—C14—C11119.4 (11)
C10—C9—C8111.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.832.626 (10)164
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC14H18O3
Mr234.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)6.178 (3), 35.042 (8), 6.526 (3)
β (°) 113.93 (4)
V3)1291.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.25 × 0.24
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2657, 2330, 1301
Rint0.001
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.149, 0.97
No. of reflections2330
No. of parameters156
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.832.626 (10)163.9
Symmetry code: (i) x+2, y+2, z+2.
 

References

First citationDunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.  Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSekera, V. C. & Marvel, C. S. (1933). J. Am. Chem. Soc. B55, 345–349.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds