organic compounds
trans-4-(Phenoxymethyl)cyclohexanecarboxylic acid
aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Pharmaceuticals and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn
The title compound, C14H18O3, is an important model compound in the synthesis of phenolic The cyclohexane ring adopts a chair conformation. In the adjacent molecules are linked by O—H⋯O hydrogen bonds.
Related literature
For related literature, see: Dunitz & Strickler (1966); Sekera & Marvel (1933); Luger et al. (1972).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: DIFRAC (Gabe et al., 1993); cell DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808007381/bv2092sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007381/bv2092Isup2.hkl
Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate(3.26 g, 10 mmol), phenol(2.82 g, 30 mmol) and potassium phosphate(10.6 g, 50 mmol) were suspended in dry DMF(20 mL) and heated at 368 K for 6 h, then 30 mL water and 30 mL toluene were added to the mixture. The water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and concentration, the crude product was obtained which was further purified by silica gel
to give pure methyl ester. The ester was hydrolyzed in a mixed solution of 10 mL e thanol and 15 mL 1 N NaOH solution for 5 h at 313 K, after cooling and acidification with hydrochloride the white solid precipitated was collected. Colorless crystals were obtained by slow evaporation in a ethanol-water(4:1) solution at room temperature.H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).
Data collection: DIFRAC (Gabe et al., 1993); cell
DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. |
C14H18O3 | F(000) = 504 |
Mr = 234.28 | Dx = 1.205 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.178 (3) Å | Cell parameters from 30 reflections |
b = 35.042 (8) Å | θ = 4.5–9.5° |
c = 6.526 (3) Å | µ = 0.08 mm−1 |
β = 113.93 (4)° | T = 292 K |
V = 1291.4 (9) Å3 | Block, colourless |
Z = 4 | 0.45 × 0.25 × 0.24 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.001 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 3.5° |
Graphite monochromator | h = −7→6 |
ω/2–θ scans | k = 0→42 |
2657 measured reflections | l = −1→7 |
2330 independent reflections | 3 standard reflections every 250 reflections |
1301 reflections with I > 2σ(I) | intensity decay: 1.8% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0395P)2] where P = (Fo2 + 2Fc2)/3 |
2330 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.17 e Å−3 |
9 restraints | Δρmin = −0.17 e Å−3 |
C14H18O3 | V = 1291.4 (9) Å3 |
Mr = 234.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.178 (3) Å | µ = 0.08 mm−1 |
b = 35.042 (8) Å | T = 292 K |
c = 6.526 (3) Å | 0.45 × 0.25 × 0.24 mm |
β = 113.93 (4)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.001 |
2657 measured reflections | 3 standard reflections every 250 reflections |
2330 independent reflections | intensity decay: 1.8% |
1301 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.072 | 9 restraints |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.17 e Å−3 |
2330 reflections | Δρmin = −0.17 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5351 (13) | 0.8410 (2) | −0.0641 (11) | 0.084 (2) | |
O2 | 1.0653 (15) | 0.9709 (3) | 0.8119 (13) | 0.110 (3) | |
H2 | 1.1166 | 0.9870 | 0.9115 | 0.132* | |
O3 | 0.7287 (14) | 0.9889 (2) | 0.8198 (11) | 0.104 (3) | |
C1 | 0.584 (2) | 0.8016 (3) | −0.328 (2) | 0.087 (4) | |
H1 | 0.7444 | 0.8012 | −0.2354 | 0.105* | |
C2 | 0.494 (4) | 0.7816 (4) | −0.531 (3) | 0.112 (6) | |
H2A | 0.5971 | 0.7680 | −0.5758 | 0.134* | |
C3 | 0.260 (4) | 0.7818 (4) | −0.662 (3) | 0.117 (6) | |
H3 | 0.2030 | 0.7679 | −0.7951 | 0.141* | |
C4 | 0.103 (3) | 0.8026 (4) | −0.6030 (19) | 0.102 (5) | |
H4 | −0.0571 | 0.8032 | −0.6962 | 0.123* | |
C5 | 0.192 (3) | 0.8225 (3) | −0.3991 (19) | 0.085 (4) | |
H5 | 0.0893 | 0.8360 | −0.3543 | 0.102* | |
C6 | 0.425 (3) | 0.8221 (3) | −0.268 (2) | 0.074 (4) | |
C7 | 0.3845 (19) | 0.8640 (3) | 0.0058 (16) | 0.080 (4) | |
H7A | 0.2653 | 0.8483 | 0.0257 | 0.096* | |
H7B | 0.3052 | 0.8834 | −0.1060 | 0.096* | |
C8 | 0.5426 (19) | 0.8826 (3) | 0.2262 (15) | 0.062 (3) | |
H8 | 0.6310 | 0.8625 | 0.3314 | 0.074* | |
C9 | 0.3865 (17) | 0.9033 (3) | 0.3227 (15) | 0.076 (4) | |
H9A | 0.2912 | 0.9223 | 0.2163 | 0.092* | |
H9B | 0.2802 | 0.8852 | 0.3460 | 0.092* | |
C10 | 0.5351 (19) | 0.9225 (3) | 0.5425 (15) | 0.076 (4) | |
H10A | 0.4323 | 0.9360 | 0.5975 | 0.092* | |
H10B | 0.6210 | 0.9033 | 0.6524 | 0.092* | |
C11 | 0.7078 (19) | 0.9501 (3) | 0.5158 (16) | 0.066 (3) | |
H11 | 0.6143 | 0.9689 | 0.4037 | 0.079* | |
C12 | 0.8661 (18) | 0.9296 (3) | 0.4193 (15) | 0.075 (3) | |
H12A | 0.9704 | 0.9480 | 0.3942 | 0.091* | |
H12B | 0.9635 | 0.9108 | 0.5261 | 0.091* | |
C13 | 0.7164 (19) | 0.9100 (3) | 0.2005 (16) | 0.077 (3) | |
H13A | 0.6310 | 0.9292 | 0.0898 | 0.092* | |
H13B | 0.8191 | 0.8964 | 0.1460 | 0.092* | |
C14 | 0.842 (2) | 0.9717 (4) | 0.7277 (17) | 0.073 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.102 (6) | 0.090 (6) | 0.065 (5) | −0.001 (5) | 0.040 (5) | −0.021 (5) |
O2 | 0.103 (7) | 0.143 (9) | 0.085 (6) | 0.002 (7) | 0.040 (6) | −0.046 (5) |
O3 | 0.109 (7) | 0.127 (8) | 0.083 (6) | 0.020 (6) | 0.046 (5) | −0.031 (5) |
C1 | 0.120 (12) | 0.073 (9) | 0.093 (9) | 0.000 (8) | 0.068 (9) | −0.004 (8) |
C2 | 0.179 (18) | 0.097 (12) | 0.102 (12) | −0.012 (13) | 0.100 (13) | −0.017 (10) |
C3 | 0.20 (2) | 0.099 (12) | 0.078 (11) | −0.008 (14) | 0.078 (13) | −0.007 (9) |
C4 | 0.152 (14) | 0.093 (11) | 0.070 (9) | −0.011 (10) | 0.052 (10) | −0.013 (8) |
C5 | 0.114 (12) | 0.088 (10) | 0.058 (8) | 0.000 (9) | 0.038 (8) | −0.009 (8) |
C6 | 0.108 (12) | 0.063 (9) | 0.063 (8) | 0.000 (9) | 0.045 (9) | 0.002 (7) |
C7 | 0.098 (9) | 0.090 (9) | 0.066 (7) | −0.006 (8) | 0.049 (7) | −0.010 (7) |
C8 | 0.080 (8) | 0.056 (8) | 0.051 (6) | 0.001 (7) | 0.029 (6) | −0.004 (6) |
C9 | 0.088 (9) | 0.095 (10) | 0.061 (7) | −0.013 (7) | 0.045 (7) | −0.013 (7) |
C10 | 0.096 (9) | 0.090 (9) | 0.062 (7) | −0.025 (8) | 0.052 (7) | −0.021 (7) |
C11 | 0.084 (9) | 0.065 (8) | 0.050 (6) | 0.005 (7) | 0.030 (6) | −0.010 (6) |
C12 | 0.088 (9) | 0.079 (9) | 0.067 (7) | −0.012 (7) | 0.039 (7) | −0.011 (7) |
C13 | 0.089 (9) | 0.098 (10) | 0.059 (7) | −0.013 (8) | 0.044 (7) | −0.017 (7) |
C14 | 0.068 (9) | 0.102 (10) | 0.055 (7) | 0.013 (9) | 0.030 (7) | 0.004 (7) |
O1—C6 | 1.394 (12) | C7—H7B | 0.9700 |
O1—C7 | 1.438 (10) | C8—C13 | 1.501 (12) |
O2—C14 | 1.261 (11) | C8—C9 | 1.532 (11) |
O2—H2 | 0.8200 | C8—H8 | 0.9800 |
O3—C14 | 1.248 (11) | C9—C10 | 1.512 (12) |
C1—C6 | 1.392 (14) | C9—H9A | 0.9700 |
C1—C2 | 1.401 (16) | C9—H9B | 0.9700 |
C1—H1 | 0.9300 | C10—C11 | 1.501 (12) |
C2—C3 | 1.350 (18) | C10—H10A | 0.9700 |
C2—H2A | 0.9300 | C10—H10B | 0.9700 |
C3—C4 | 1.386 (17) | C11—C14 | 1.497 (13) |
C3—H3 | 0.9300 | C11—C12 | 1.540 (12) |
C4—C5 | 1.402 (13) | C11—H11 | 0.9800 |
C4—H4 | 0.9300 | C12—C13 | 1.514 (12) |
C5—C6 | 1.341 (14) | C12—H12A | 0.9700 |
C5—H5 | 0.9300 | C12—H12B | 0.9700 |
C7—C8 | 1.519 (12) | C13—H13A | 0.9700 |
C7—H7A | 0.9700 | C13—H13B | 0.9700 |
C6—O1—C7 | 116.2 (9) | C10—C9—H9A | 109.4 |
C14—O2—H2 | 109.5 | C8—C9—H9A | 109.4 |
C6—C1—C2 | 118.1 (14) | C10—C9—H9B | 109.4 |
C6—C1—H1 | 120.9 | C8—C9—H9B | 109.4 |
C2—C1—H1 | 120.9 | H9A—C9—H9B | 108.0 |
C3—C2—C1 | 120.5 (16) | C11—C10—C9 | 111.3 (8) |
C3—C2—H2A | 119.8 | C11—C10—H10A | 109.4 |
C1—C2—H2A | 119.8 | C9—C10—H10A | 109.4 |
C2—C3—C4 | 121.1 (16) | C11—C10—H10B | 109.4 |
C2—C3—H3 | 119.5 | C9—C10—H10B | 109.4 |
C4—C3—H3 | 119.5 | H10A—C10—H10B | 108.0 |
C3—C4—C5 | 118.5 (14) | C14—C11—C10 | 111.9 (8) |
C3—C4—H4 | 120.7 | C14—C11—C12 | 114.1 (10) |
C5—C4—H4 | 120.7 | C10—C11—C12 | 110.2 (8) |
C6—C5—C4 | 120.3 (12) | C14—C11—H11 | 106.7 |
C6—C5—H5 | 119.8 | C10—C11—H11 | 106.7 |
C4—C5—H5 | 119.8 | C12—C11—H11 | 106.7 |
C5—C6—C1 | 121.5 (12) | C13—C12—C11 | 110.5 (9) |
C5—C6—O1 | 125.9 (11) | C13—C12—H12A | 109.5 |
C1—C6—O1 | 112.7 (13) | C11—C12—H12A | 109.5 |
O1—C7—C8 | 106.9 (9) | C13—C12—H12B | 109.5 |
O1—C7—H7A | 110.3 | C11—C12—H12B | 109.5 |
C8—C7—H7A | 110.3 | H12A—C12—H12B | 108.1 |
O1—C7—H7B | 110.3 | C8—C13—C12 | 112.1 (7) |
C8—C7—H7B | 110.3 | C8—C13—H13A | 109.2 |
H7A—C7—H7B | 108.6 | C12—C13—H13A | 109.2 |
C13—C8—C7 | 112.5 (8) | C8—C13—H13B | 109.2 |
C13—C8—C9 | 109.9 (8) | C12—C13—H13B | 109.2 |
C7—C8—C9 | 108.8 (9) | H13A—C13—H13B | 107.9 |
C13—C8—H8 | 108.5 | O3—C14—O2 | 122.0 (11) |
C7—C8—H8 | 108.5 | O3—C14—C11 | 118.6 (11) |
C9—C8—H8 | 108.5 | O2—C14—C11 | 119.4 (11) |
C10—C9—C8 | 111.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.82 | 1.83 | 2.626 (10) | 164 |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C14H18O3 |
Mr | 234.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 292 |
a, b, c (Å) | 6.178 (3), 35.042 (8), 6.526 (3) |
β (°) | 113.93 (4) |
V (Å3) | 1291.4 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.45 × 0.25 × 0.24 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2657, 2330, 1301 |
Rint | 0.001 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.149, 0.97 |
No. of reflections | 2330 |
No. of parameters | 156 |
No. of restraints | 9 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.17 |
Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.82 | 1.83 | 2.626 (10) | 163.9 |
Symmetry code: (i) −x+2, −y+2, −z+2. |
References
Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA. Google Scholar
Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sekera, V. C. & Marvel, C. S. (1933). J. Am. Chem. Soc. B55, 345–349. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To compare the activity of 4-chloromethyl cyclohexane and 4-(tosyloxymethyl)cyclohexane, some cyclohexane derivatives were designed to be linked to substituted phenol. Thus the title compound, a trans-4-(phenoxymethyl)cyclohexanecarboxylic acid was synthesized (Sekera & Marvel,1933). We report here the crystal structure of the title compound. The cyclohexane ring of the title compound adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (12) Å, is similar to that of trans-1,4-cyclohexanedicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 110.9 (8)°, which is in the range observed for cyclohexane rings (111.4 (4)°, Dunitz & Strickler, 1966).