metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m520-m521

2-Amino­pyridinium (2-amino­pyridine)tri­chloridonickelate(II)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 February 2008; accepted 28 February 2008; online 5 March 2008)

In the title compound, (C5H7N2)[NiCl3(C5H6N2)], the NiII atom is four-coordinated by three chloride anions and one N atom of a 2-amino­pyridine ligand, forming a distorted tetra­hedral coordination. In the crystal structure, cations and complex anions are linked into chains along the a, b and c axes by N—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional framework.

Related literature

For related literature, see: Batsanov & Howard (2001[Batsanov, A. S. & Howard, J. A. K. (2001). Acta Cryst. E57, m308-m309.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]); Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]); Corain et al. (1985[Corain, B., Longato, B., Angeletti, R. & Valle, G. (1985). Inorg. Chim. Acta, 104, 15-18.]); Jebas et al. (2006[Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, m1818-m1819.]); Valdés-Martínez et al. (2001[Valdés-Martínez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). Acta Cryst. E57, m137-m139.]); Sletten & Kovacs (1993[Sletten, J. & Kovacs, J. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 239.]); Smith et al. (2000[Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505-1506.], 2001[Smith, M. C., Davies, S. C., Hughes, D. L. & Evans, D. J. (2001). Acta Cryst. E57, m509-m510.]); Stibrany et al. (2004[Stibrany, R. T., Matturro, M. G., Zushma, S. & Patil, A. O. (2004). Acta Cryst. E60, m188-m189.]); Wei & Willett (1995[Wei, M. & Willett, R. D. (1995). Inorg. Chem. 34, 3780-3782.]); Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Rahway, New Jersey, USA: Merck & Co., Inc.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[NiCl3(C5H6N2)]

  • Mr = 354.3

  • Monoclinic, C c

  • a = 12.9265 (1) Å

  • b = 8.0644 (1) Å

  • c = 13.9893 (1) Å

  • β = 106.163 (1)°

  • V = 1400.67 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100.0 (1) K

  • 0.37 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer with Oxford Cryosystems Cobra low-temperature attachment

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.533, Tmax = 0.876

  • 19539 measured reflections

  • 6427 independent reflections

  • 5088 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.05

  • 6427 reflections

  • 167 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1953 Friedel pairs

  • Flack parameter: 0.065 (9)

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 2.0287 (17)
Ni1—Cl2 2.2625 (6)
Ni1—Cl1 2.2665 (5)
Ni1—Cl3 2.2722 (6)
N1—Ni1—Cl2 114.10 (5)
N1—Ni1—Cl1 109.21 (5)
Cl2—Ni1—Cl1 107.77 (2)
N1—Ni1—Cl3 104.63 (5)
Cl2—Ni1—Cl3 108.62 (2)
Cl1—Ni1—Cl3 112.60 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯Cl2i 0.82 (3) 2.81 (3) 3.380 (2) 128 (2)
N2—H2B⋯Cl2 0.86 2.53 3.3475 (19) 159
N2—H2C⋯Cl1ii 0.86 2.63 3.4866 (19) 172
N4—H4B⋯Cl3i 0.86 2.36 3.197 (2) 165
N4—H4C⋯Cl1iii 0.86 2.54 3.344 (2) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As a part of our investigations on the binding modes of 2-aminopyridine with metals, we report here the crystal structure of 2-aminopyridinium (2-aminopyridine)trichloronickel(II).

The asymmetric unit of the title compound contains one 2-aminopyridinium cation and one (2-aminopyridine)trichloronickel(II) anion. Protonation of atom N3 of the uncomplexed 2-aminopyridine results in the widening of the C6—N3—C10 angle to 123.3 (2)°, which is 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles are comparable with those observed in related structures (Bis & Zaworotko, 2005; Smith et al., 2000; Jebas et al., 2006).

In the monomeric complex, the NiII ion is four-coordinated by three Cl anions and the N atom of the 2-aminopyridine ligand, forming a distorted tetrahedral coordination (Fig 1). The Ni—Cl bond lengths (Table 1) are comparable with that reported in the literature (Valdés-Martínez et al., 2001; Batsanov et al., 2001; Sletten & Kovacs, 1993; Corain et al., 1985; Stibrany et al., 2004). The Cl—Ni—Cl bond angles (107.77 (2)° and 108.62 (2)°) are close to the values reported in the literature (Smith et al., 2001; Wei et al., 1995). The dihedral angle between the pyridine and pyridinium rings is 0.9 (2)°.

In the crystal structure, the cations and anionic complexes are stacked into chains along the a, b and c axes and are linked into a three-dimensional framework by N—H···Cl hydrogen bonds (Fig 2).

Related literature top

For related literature, see: Batsanov & Howard (2001); Bis & Zaworotko (2005); Chao et al. (1975); Corain et al. (1985); Jebas et al. (2006); Valdés-Martínez et al. (2001); Sletten & Kovacs (1993); Smith et al. (2000, 2001); Stibrany et al. (2004); Wei & Willett (1995); Windholz (1976).

Experimental top

Solutions of 2-aminopyridine and NiCl2.2H2O in water were mixed in a molar ratio of 2:1. Few drops of dilute hydrochloric acid were added to the solution and heated at 363 K for 2 h. Blue crystals of the title compound were obtained by slow evaporation after a period of one week.

Refinement top

After checking their presence in a difference map, all H atoms except H1N3 were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). Atom H1N3 was refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
2-Aminopyridinium (2-aminopyridine)trichloridonickelate(II) top
Crystal data top
(C5H7N2)[NiCl3(C5H6N2)]F(000) = 720
Mr = 354.3Dx = 1.68 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8411 reflections
a = 12.9265 (1) Åθ = 3.0–30.6°
b = 8.0644 (1) ŵ = 1.94 mm1
c = 13.9893 (1) ÅT = 100 K
β = 106.163 (1)°Block, blue
V = 1400.67 (2) Å30.37 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5088 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.031
ω scansθmax = 40.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2323
Tmin = 0.533, Tmax = 0.876k = 1414
19539 measured reflectionsl = 2516
6427 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.079Δρmax = 0.52 e Å3
S = 1.05Δρmin = 0.64 e Å3
6427 reflectionsAbsolute structure: Flack (1983), 1953 Friedel pairs
167 parametersAbsolute structure parameter: 0.065 (9)
2 restraints
Crystal data top
(C5H7N2)[NiCl3(C5H6N2)]V = 1400.67 (2) Å3
Mr = 354.3Z = 4
Monoclinic, CcMo Kα radiation
a = 12.9265 (1) ŵ = 1.94 mm1
b = 8.0644 (1) ÅT = 100 K
c = 13.9893 (1) Å0.37 × 0.08 × 0.07 mm
β = 106.163 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6427 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5088 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.876Rint = 0.031
19539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.52 e Å3
S = 1.05Δρmin = 0.64 e Å3
6427 reflectionsAbsolute structure: Flack (1983), 1953 Friedel pairs
167 parametersAbsolute structure parameter: 0.065 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.245028 (18)0.65589 (3)0.188212 (18)0.01865 (6)
Cl10.40142 (4)0.66552 (7)0.14504 (4)0.01889 (9)
Cl20.19741 (4)0.38637 (6)0.19116 (4)0.02255 (10)
Cl30.10912 (4)0.79387 (7)0.07906 (4)0.02299 (10)
N10.26459 (13)0.7760 (2)0.31947 (12)0.0157 (3)
N20.30301 (15)0.5422 (2)0.41934 (14)0.0228 (4)
H2B0.28950.48160.36670.027*
H2C0.3220.49660.47720.027*
N30.55299 (14)0.0900 (2)0.44965 (14)0.0191 (3)
N40.53731 (16)0.1509 (2)0.35719 (15)0.0228 (4)
H4B0.55740.20720.41140.027*
H4C0.52240.20070.30060.027*
C10.29457 (15)0.7074 (3)0.41122 (15)0.0181 (4)
C20.31669 (17)0.8074 (3)0.49792 (16)0.0213 (4)
H2A0.33840.75910.56070.026*
C30.30568 (17)0.9761 (3)0.48792 (18)0.0254 (4)
H3A0.31991.04310.54420.03*
C40.27352 (17)1.0463 (3)0.39438 (18)0.0245 (4)
H4A0.26521.16050.38670.029*
C50.25411 (16)0.9441 (3)0.31322 (17)0.0198 (4)
H5A0.23260.9920.25030.024*
C60.52944 (15)0.0123 (2)0.36071 (15)0.0173 (3)
C70.49768 (16)0.1116 (3)0.27449 (16)0.0203 (4)
H7A0.48130.06280.21180.024*
C80.49108 (16)0.2795 (3)0.28322 (16)0.0217 (4)
H8A0.47040.34470.22620.026*
C90.51508 (17)0.3550 (3)0.37731 (18)0.0229 (4)
H9A0.50930.46930.38320.027*
C100.54691 (16)0.2575 (3)0.45963 (17)0.0222 (4)
H10A0.56450.30510.52270.027*
H1N30.571 (2)0.030 (3)0.499 (2)0.023 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02016 (11)0.02167 (12)0.01419 (12)0.00140 (10)0.00489 (9)0.00168 (10)
Cl10.0188 (2)0.0211 (2)0.0179 (2)0.00022 (15)0.00699 (18)0.00025 (16)
Cl20.0285 (2)0.0194 (2)0.0211 (2)0.00610 (19)0.0092 (2)0.00511 (18)
Cl30.0208 (2)0.0324 (3)0.0142 (2)0.00279 (19)0.00214 (17)0.00196 (19)
N10.0151 (7)0.0181 (7)0.0133 (7)0.0002 (6)0.0030 (6)0.0000 (6)
N20.0313 (9)0.0201 (9)0.0150 (8)0.0021 (7)0.0032 (7)0.0003 (6)
N30.0170 (7)0.0273 (9)0.0132 (8)0.0013 (6)0.0043 (6)0.0020 (7)
N40.0283 (9)0.0220 (8)0.0168 (9)0.0019 (7)0.0038 (7)0.0029 (6)
C10.0146 (8)0.0238 (10)0.0165 (9)0.0012 (6)0.0053 (7)0.0011 (7)
C20.0180 (8)0.0307 (11)0.0149 (9)0.0009 (7)0.0043 (7)0.0018 (8)
C30.0224 (9)0.0269 (11)0.0278 (12)0.0030 (8)0.0087 (9)0.0105 (9)
C40.0251 (10)0.0189 (9)0.0309 (12)0.0026 (8)0.0099 (9)0.0067 (9)
C50.0195 (8)0.0179 (9)0.0224 (10)0.0007 (7)0.0065 (8)0.0002 (8)
C60.0153 (8)0.0220 (9)0.0142 (9)0.0021 (7)0.0035 (7)0.0011 (7)
C70.0183 (8)0.0269 (10)0.0145 (9)0.0001 (7)0.0023 (7)0.0026 (8)
C80.0201 (9)0.0261 (10)0.0185 (10)0.0034 (8)0.0050 (8)0.0059 (8)
C90.0204 (9)0.0225 (10)0.0272 (12)0.0019 (7)0.0092 (9)0.0010 (8)
C100.0183 (8)0.0288 (11)0.0200 (10)0.0008 (8)0.0062 (8)0.0052 (8)
Geometric parameters (Å, º) top
Ni1—N12.0287 (17)C2—C31.371 (3)
Ni1—Cl22.2625 (6)C2—H2A0.93
Ni1—Cl12.2665 (5)C3—C41.380 (3)
Ni1—Cl32.2722 (6)C3—H3A0.93
N1—C11.352 (3)C4—C51.369 (3)
N1—C51.363 (3)C4—H4A0.93
N2—C11.339 (3)C5—H5A0.93
N2—H2B0.86C6—C71.410 (3)
N2—H2C0.86C7—C81.364 (3)
N3—C61.350 (3)C7—H7A0.93
N3—C101.362 (3)C8—C91.404 (3)
N3—H1N30.82 (3)C8—H8A0.93
N4—C61.322 (3)C9—C101.360 (3)
N4—H4B0.86C9—H9A0.93
N4—H4C0.86C10—H10A0.93
C1—C21.417 (3)
N1—Ni1—Cl2114.10 (5)C2—C3—C4120.0 (2)
N1—Ni1—Cl1109.21 (5)C2—C3—H3A120
Cl2—Ni1—Cl1107.77 (2)C4—C3—H3A120
N1—Ni1—Cl3104.63 (5)C5—C4—C3118.5 (2)
Cl2—Ni1—Cl3108.62 (2)C5—C4—H4A120.8
Cl1—Ni1—Cl3112.60 (2)C3—C4—H4A120.8
C1—N1—C5117.72 (18)N1—C5—C4123.6 (2)
C1—N1—Ni1126.48 (14)N1—C5—H5A118.2
C5—N1—Ni1115.59 (13)C4—C5—H5A118.2
C1—N2—H2B120N4—C6—N3119.8 (2)
C1—N2—H2C120N4—C6—C7122.7 (2)
H2B—N2—H2C120N3—C6—C7117.51 (19)
C6—N3—C10123.36 (19)C8—C7—C6119.8 (2)
C6—N3—H1N3115.9 (18)C8—C7—H7A120.1
C10—N3—H1N3120.7 (18)C6—C7—H7A120.1
C6—N4—H4B120C7—C8—C9120.7 (2)
C6—N4—H4C120C7—C8—H8A119.6
H4B—N4—H4C120C9—C8—H8A119.6
N2—C1—N1118.88 (18)C10—C9—C8118.6 (2)
N2—C1—C2120.05 (19)C10—C9—H9A120.7
N1—C1—C2121.1 (2)C8—C9—H9A120.7
C3—C2—C1119.1 (2)C9—C10—N3119.9 (2)
C3—C2—H2A120.4C9—C10—H10A120
C1—C2—H2A120.4N3—C10—H10A120
Cl2—Ni1—N1—C128.37 (17)C2—C3—C4—C50.5 (3)
Cl1—Ni1—N1—C192.28 (15)C1—N1—C5—C40.8 (3)
Cl3—Ni1—N1—C1146.95 (15)Ni1—N1—C5—C4174.29 (16)
Cl2—Ni1—N1—C5156.98 (11)C3—C4—C5—N10.1 (3)
Cl1—Ni1—N1—C582.36 (13)C10—N3—C6—N4179.99 (18)
Cl3—Ni1—N1—C538.41 (13)C10—N3—C6—C70.4 (3)
C5—N1—C1—N2178.47 (16)N4—C6—C7—C8179.96 (19)
Ni1—N1—C1—N27.0 (3)N3—C6—C7—C80.5 (3)
C5—N1—C1—C21.4 (3)C6—C7—C8—C90.3 (3)
Ni1—N1—C1—C2173.14 (13)C7—C8—C9—C101.1 (3)
N2—C1—C2—C3178.84 (18)C8—C9—C10—N31.2 (3)
N1—C1—C2—C31.0 (3)C6—N3—C10—C90.5 (3)
C1—C2—C3—C40.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···Cl2i0.82 (3)2.81 (3)3.380 (2)128 (2)
N2—H2B···Cl20.862.533.3475 (19)159
N2—H2C···Cl1ii0.862.633.4866 (19)172
N4—H4B···Cl3i0.862.363.197 (2)165
N4—H4C···Cl1iii0.862.543.344 (2)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)[NiCl3(C5H6N2)]
Mr354.3
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.9265 (1), 8.0644 (1), 13.9893 (1)
β (°) 106.163 (1)
V3)1400.67 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.37 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.533, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
19539, 6427, 5088
Rint0.031
(sin θ/λ)max1)0.916
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.05
No. of reflections6427
No. of parameters167
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.64
Absolute structureFlack (1983), 1953 Friedel pairs
Absolute structure parameter0.065 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ni1—N12.0287 (17)Ni1—Cl12.2665 (5)
Ni1—Cl22.2625 (6)Ni1—Cl32.2722 (6)
N1—Ni1—Cl2114.10 (5)N1—Ni1—Cl3104.63 (5)
N1—Ni1—Cl1109.21 (5)Cl2—Ni1—Cl3108.62 (2)
Cl2—Ni1—Cl1107.77 (2)Cl1—Ni1—Cl3112.60 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···Cl2i0.82 (3)2.81 (3)3.380 (2)128 (2)
N2—H2B···Cl20.862.533.3475 (19)159
N2—H2C···Cl1ii0.862.633.4866 (19)172
N4—H4B···Cl3i0.862.363.197 (2)165
N4—H4C···Cl1iii0.862.543.344 (2)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y1, z.
 

Footnotes

Permanent address: Lecturer, Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for the award a postdoctoral research fellowship.

References

First citationBatsanov, A. S. & Howard, J. A. K. (2001). Acta Cryst. E57, m308–m309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCorain, B., Longato, B., Angeletti, R. & Valle, G. (1985). Inorg. Chim. Acta, 104, 15–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, m1818–m1819.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSletten, J. & Kovacs, J. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 239.  CSD CrossRef Web of Science Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. C., Davies, S. C., Hughes, D. L. & Evans, D. J. (2001). Acta Cryst. E57, m509–m510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Matturro, M. G., Zushma, S. & Patil, A. O. (2004). Acta Cryst. E60, m188–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValdés-Martínez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). Acta Cryst. E57, m137–m139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, M. & Willett, R. D. (1995). Inorg. Chem. 34, 3780–3782.  CSD CrossRef CAS Web of Science Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Rahway, New Jersey, USA: Merck & Co., Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m520-m521
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds