metal-organic compounds
2-Aminopyridinium (2-aminopyridine)trichloridonickelate(II)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, (C5H7N2)[NiCl3(C5H6N2)], the NiII atom is four-coordinated by three chloride anions and one N atom of a 2-aminopyridine ligand, forming a distorted tetrahedral coordination. In the cations and complex anions are linked into chains along the a, b and c axes by N—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional framework.
Related literature
For related literature, see: Batsanov & Howard (2001); Bis & Zaworotko (2005); Chao et al. (1975); Corain et al. (1985); Jebas et al. (2006); Valdés-Martínez et al. (2001); Sletten & Kovacs (1993); Smith et al. (2000, 2001); Stibrany et al. (2004); Wei & Willett (1995); Windholz (1976).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808005655/ci2566sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005655/ci2566Isup2.hkl
Solutions of 2-aminopyridine and NiCl2.2H2O in water were mixed in a molar ratio of 2:1. Few drops of dilute hydrochloric acid were added to the solution and heated at 363 K for 2 h. Blue crystals of the title compound were obtained by slow evaporation after a period of one week.
After checking their presence in a difference map, all H atoms except H1N3 were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). Atom H1N3 was refined isotropically.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).(C5H7N2)[NiCl3(C5H6N2)] | F(000) = 720 |
Mr = 354.3 | Dx = 1.68 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 8411 reflections |
a = 12.9265 (1) Å | θ = 3.0–30.6° |
b = 8.0644 (1) Å | µ = 1.94 mm−1 |
c = 13.9893 (1) Å | T = 100 K |
β = 106.163 (1)° | Block, blue |
V = 1400.67 (2) Å3 | 0.37 × 0.08 × 0.07 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 5088 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.031 |
ω scans | θmax = 40.6°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −23→23 |
Tmin = 0.533, Tmax = 0.876 | k = −14→14 |
19539 measured reflections | l = −25→16 |
6427 independent reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.035 | (Δ/σ)max < 0.001 |
wR(F2) = 0.079 | Δρmax = 0.52 e Å−3 |
S = 1.05 | Δρmin = −0.64 e Å−3 |
6427 reflections | Absolute structure: Flack (1983), 1953 Friedel pairs |
167 parameters | Absolute structure parameter: 0.065 (9) |
2 restraints |
(C5H7N2)[NiCl3(C5H6N2)] | V = 1400.67 (2) Å3 |
Mr = 354.3 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 12.9265 (1) Å | µ = 1.94 mm−1 |
b = 8.0644 (1) Å | T = 100 K |
c = 13.9893 (1) Å | 0.37 × 0.08 × 0.07 mm |
β = 106.163 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 6427 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5088 reflections with I > 2σ(I) |
Tmin = 0.533, Tmax = 0.876 | Rint = 0.031 |
19539 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | Δρmax = 0.52 e Å−3 |
S = 1.05 | Δρmin = −0.64 e Å−3 |
6427 reflections | Absolute structure: Flack (1983), 1953 Friedel pairs |
167 parameters | Absolute structure parameter: 0.065 (9) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.245028 (18) | 0.65589 (3) | 0.188212 (18) | 0.01865 (6) | |
Cl1 | 0.40142 (4) | 0.66552 (7) | 0.14504 (4) | 0.01889 (9) | |
Cl2 | 0.19741 (4) | 0.38637 (6) | 0.19116 (4) | 0.02255 (10) | |
Cl3 | 0.10912 (4) | 0.79387 (7) | 0.07906 (4) | 0.02299 (10) | |
N1 | 0.26459 (13) | 0.7760 (2) | 0.31947 (12) | 0.0157 (3) | |
N2 | 0.30301 (15) | 0.5422 (2) | 0.41934 (14) | 0.0228 (4) | |
H2B | 0.2895 | 0.4816 | 0.3667 | 0.027* | |
H2C | 0.322 | 0.4966 | 0.4772 | 0.027* | |
N3 | 0.55299 (14) | 0.0900 (2) | 0.44965 (14) | 0.0191 (3) | |
N4 | 0.53731 (16) | −0.1509 (2) | 0.35719 (15) | 0.0228 (4) | |
H4B | 0.5574 | −0.2072 | 0.4114 | 0.027* | |
H4C | 0.5224 | −0.2007 | 0.3006 | 0.027* | |
C1 | 0.29457 (15) | 0.7074 (3) | 0.41122 (15) | 0.0181 (4) | |
C2 | 0.31669 (17) | 0.8074 (3) | 0.49792 (16) | 0.0213 (4) | |
H2A | 0.3384 | 0.7591 | 0.5607 | 0.026* | |
C3 | 0.30568 (17) | 0.9761 (3) | 0.48792 (18) | 0.0254 (4) | |
H3A | 0.3199 | 1.0431 | 0.5442 | 0.03* | |
C4 | 0.27352 (17) | 1.0463 (3) | 0.39438 (18) | 0.0245 (4) | |
H4A | 0.2652 | 1.1605 | 0.3867 | 0.029* | |
C5 | 0.25411 (16) | 0.9441 (3) | 0.31322 (17) | 0.0198 (4) | |
H5A | 0.2326 | 0.992 | 0.2503 | 0.024* | |
C6 | 0.52944 (15) | 0.0123 (2) | 0.36071 (15) | 0.0173 (3) | |
C7 | 0.49768 (16) | 0.1116 (3) | 0.27449 (16) | 0.0203 (4) | |
H7A | 0.4813 | 0.0628 | 0.2118 | 0.024* | |
C8 | 0.49108 (16) | 0.2795 (3) | 0.28322 (16) | 0.0217 (4) | |
H8A | 0.4704 | 0.3447 | 0.2262 | 0.026* | |
C9 | 0.51508 (17) | 0.3550 (3) | 0.37731 (18) | 0.0229 (4) | |
H9A | 0.5093 | 0.4693 | 0.3832 | 0.027* | |
C10 | 0.54691 (16) | 0.2575 (3) | 0.45963 (17) | 0.0222 (4) | |
H10A | 0.5645 | 0.3051 | 0.5227 | 0.027* | |
H1N3 | 0.571 (2) | 0.030 (3) | 0.499 (2) | 0.023 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02016 (11) | 0.02167 (12) | 0.01419 (12) | −0.00140 (10) | 0.00489 (9) | −0.00168 (10) |
Cl1 | 0.0188 (2) | 0.0211 (2) | 0.0179 (2) | −0.00022 (15) | 0.00699 (18) | −0.00025 (16) |
Cl2 | 0.0285 (2) | 0.0194 (2) | 0.0211 (2) | −0.00610 (19) | 0.0092 (2) | −0.00511 (18) |
Cl3 | 0.0208 (2) | 0.0324 (3) | 0.0142 (2) | 0.00279 (19) | 0.00214 (17) | 0.00196 (19) |
N1 | 0.0151 (7) | 0.0181 (7) | 0.0133 (7) | −0.0002 (6) | 0.0030 (6) | 0.0000 (6) |
N2 | 0.0313 (9) | 0.0201 (9) | 0.0150 (8) | 0.0021 (7) | 0.0032 (7) | 0.0003 (6) |
N3 | 0.0170 (7) | 0.0273 (9) | 0.0132 (8) | 0.0013 (6) | 0.0043 (6) | 0.0020 (7) |
N4 | 0.0283 (9) | 0.0220 (8) | 0.0168 (9) | −0.0019 (7) | 0.0038 (7) | 0.0029 (6) |
C1 | 0.0146 (8) | 0.0238 (10) | 0.0165 (9) | 0.0012 (6) | 0.0053 (7) | 0.0011 (7) |
C2 | 0.0180 (8) | 0.0307 (11) | 0.0149 (9) | −0.0009 (7) | 0.0043 (7) | −0.0018 (8) |
C3 | 0.0224 (9) | 0.0269 (11) | 0.0278 (12) | −0.0030 (8) | 0.0087 (9) | −0.0105 (9) |
C4 | 0.0251 (10) | 0.0189 (9) | 0.0309 (12) | −0.0026 (8) | 0.0099 (9) | −0.0067 (9) |
C5 | 0.0195 (8) | 0.0179 (9) | 0.0224 (10) | −0.0007 (7) | 0.0065 (8) | −0.0002 (8) |
C6 | 0.0153 (8) | 0.0220 (9) | 0.0142 (9) | −0.0021 (7) | 0.0035 (7) | 0.0011 (7) |
C7 | 0.0183 (8) | 0.0269 (10) | 0.0145 (9) | 0.0001 (7) | 0.0023 (7) | 0.0026 (8) |
C8 | 0.0201 (9) | 0.0261 (10) | 0.0185 (10) | 0.0034 (8) | 0.0050 (8) | 0.0059 (8) |
C9 | 0.0204 (9) | 0.0225 (10) | 0.0272 (12) | 0.0019 (7) | 0.0092 (9) | −0.0010 (8) |
C10 | 0.0183 (8) | 0.0288 (11) | 0.0200 (10) | 0.0008 (8) | 0.0062 (8) | −0.0052 (8) |
Ni1—N1 | 2.0287 (17) | C2—C3 | 1.371 (3) |
Ni1—Cl2 | 2.2625 (6) | C2—H2A | 0.93 |
Ni1—Cl1 | 2.2665 (5) | C3—C4 | 1.380 (3) |
Ni1—Cl3 | 2.2722 (6) | C3—H3A | 0.93 |
N1—C1 | 1.352 (3) | C4—C5 | 1.369 (3) |
N1—C5 | 1.363 (3) | C4—H4A | 0.93 |
N2—C1 | 1.339 (3) | C5—H5A | 0.93 |
N2—H2B | 0.86 | C6—C7 | 1.410 (3) |
N2—H2C | 0.86 | C7—C8 | 1.364 (3) |
N3—C6 | 1.350 (3) | C7—H7A | 0.93 |
N3—C10 | 1.362 (3) | C8—C9 | 1.404 (3) |
N3—H1N3 | 0.82 (3) | C8—H8A | 0.93 |
N4—C6 | 1.322 (3) | C9—C10 | 1.360 (3) |
N4—H4B | 0.86 | C9—H9A | 0.93 |
N4—H4C | 0.86 | C10—H10A | 0.93 |
C1—C2 | 1.417 (3) | ||
N1—Ni1—Cl2 | 114.10 (5) | C2—C3—C4 | 120.0 (2) |
N1—Ni1—Cl1 | 109.21 (5) | C2—C3—H3A | 120 |
Cl2—Ni1—Cl1 | 107.77 (2) | C4—C3—H3A | 120 |
N1—Ni1—Cl3 | 104.63 (5) | C5—C4—C3 | 118.5 (2) |
Cl2—Ni1—Cl3 | 108.62 (2) | C5—C4—H4A | 120.8 |
Cl1—Ni1—Cl3 | 112.60 (2) | C3—C4—H4A | 120.8 |
C1—N1—C5 | 117.72 (18) | N1—C5—C4 | 123.6 (2) |
C1—N1—Ni1 | 126.48 (14) | N1—C5—H5A | 118.2 |
C5—N1—Ni1 | 115.59 (13) | C4—C5—H5A | 118.2 |
C1—N2—H2B | 120 | N4—C6—N3 | 119.8 (2) |
C1—N2—H2C | 120 | N4—C6—C7 | 122.7 (2) |
H2B—N2—H2C | 120 | N3—C6—C7 | 117.51 (19) |
C6—N3—C10 | 123.36 (19) | C8—C7—C6 | 119.8 (2) |
C6—N3—H1N3 | 115.9 (18) | C8—C7—H7A | 120.1 |
C10—N3—H1N3 | 120.7 (18) | C6—C7—H7A | 120.1 |
C6—N4—H4B | 120 | C7—C8—C9 | 120.7 (2) |
C6—N4—H4C | 120 | C7—C8—H8A | 119.6 |
H4B—N4—H4C | 120 | C9—C8—H8A | 119.6 |
N2—C1—N1 | 118.88 (18) | C10—C9—C8 | 118.6 (2) |
N2—C1—C2 | 120.05 (19) | C10—C9—H9A | 120.7 |
N1—C1—C2 | 121.1 (2) | C8—C9—H9A | 120.7 |
C3—C2—C1 | 119.1 (2) | C9—C10—N3 | 119.9 (2) |
C3—C2—H2A | 120.4 | C9—C10—H10A | 120 |
C1—C2—H2A | 120.4 | N3—C10—H10A | 120 |
Cl2—Ni1—N1—C1 | 28.37 (17) | C2—C3—C4—C5 | −0.5 (3) |
Cl1—Ni1—N1—C1 | −92.28 (15) | C1—N1—C5—C4 | 0.8 (3) |
Cl3—Ni1—N1—C1 | 146.95 (15) | Ni1—N1—C5—C4 | −174.29 (16) |
Cl2—Ni1—N1—C5 | −156.98 (11) | C3—C4—C5—N1 | 0.1 (3) |
Cl1—Ni1—N1—C5 | 82.36 (13) | C10—N3—C6—N4 | 179.99 (18) |
Cl3—Ni1—N1—C5 | −38.41 (13) | C10—N3—C6—C7 | 0.4 (3) |
C5—N1—C1—N2 | 178.47 (16) | N4—C6—C7—C8 | 179.96 (19) |
Ni1—N1—C1—N2 | −7.0 (3) | N3—C6—C7—C8 | −0.5 (3) |
C5—N1—C1—C2 | −1.4 (3) | C6—C7—C8—C9 | −0.3 (3) |
Ni1—N1—C1—C2 | 173.14 (13) | C7—C8—C9—C10 | 1.1 (3) |
N2—C1—C2—C3 | −178.84 (18) | C8—C9—C10—N3 | −1.2 (3) |
N1—C1—C2—C3 | 1.0 (3) | C6—N3—C10—C9 | 0.5 (3) |
C1—C2—C3—C4 | 0.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···Cl2i | 0.82 (3) | 2.81 (3) | 3.380 (2) | 128 (2) |
N2—H2B···Cl2 | 0.86 | 2.53 | 3.3475 (19) | 159 |
N2—H2C···Cl1ii | 0.86 | 2.63 | 3.4866 (19) | 172 |
N4—H4B···Cl3i | 0.86 | 2.36 | 3.197 (2) | 165 |
N4—H4C···Cl1iii | 0.86 | 2.54 | 3.344 (2) | 156 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C5H7N2)[NiCl3(C5H6N2)] |
Mr | 354.3 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 100 |
a, b, c (Å) | 12.9265 (1), 8.0644 (1), 13.9893 (1) |
β (°) | 106.163 (1) |
V (Å3) | 1400.67 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.94 |
Crystal size (mm) | 0.37 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.533, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19539, 6427, 5088 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.916 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.079, 1.05 |
No. of reflections | 6427 |
No. of parameters | 167 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.52, −0.64 |
Absolute structure | Flack (1983), 1953 Friedel pairs |
Absolute structure parameter | 0.065 (9) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Ni1—N1 | 2.0287 (17) | Ni1—Cl1 | 2.2665 (5) |
Ni1—Cl2 | 2.2625 (6) | Ni1—Cl3 | 2.2722 (6) |
N1—Ni1—Cl2 | 114.10 (5) | N1—Ni1—Cl3 | 104.63 (5) |
N1—Ni1—Cl1 | 109.21 (5) | Cl2—Ni1—Cl3 | 108.62 (2) |
Cl2—Ni1—Cl1 | 107.77 (2) | Cl1—Ni1—Cl3 | 112.60 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···Cl2i | 0.82 (3) | 2.81 (3) | 3.380 (2) | 128 (2) |
N2—H2B···Cl2 | 0.86 | 2.53 | 3.3475 (19) | 159 |
N2—H2C···Cl1ii | 0.86 | 2.63 | 3.4866 (19) | 172 |
N4—H4B···Cl3i | 0.86 | 2.36 | 3.197 (2) | 165 |
N4—H4C···Cl1iii | 0.86 | 2.54 | 3.344 (2) | 156 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y−1, z. |
Footnotes
‡Permanent address: Lecturer, Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.
Acknowledgements
HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for the award a postdoctoral research fellowship.
References
Batsanov, A. S. & Howard, J. A. K. (2001). Acta Cryst. E57, m308–m309. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Corain, B., Longato, B., Angeletti, R. & Valle, G. (1985). Inorg. Chim. Acta, 104, 15–18. CSD CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, m1818–m1819. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sletten, J. & Kovacs, J. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 239. CSD CrossRef Web of Science Google Scholar
Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, M. C., Davies, S. C., Hughes, D. L. & Evans, D. J. (2001). Acta Cryst. E57, m509–m510. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T., Matturro, M. G., Zushma, S. & Patil, A. O. (2004). Acta Cryst. E60, m188–m189. Web of Science CSD CrossRef IUCr Journals Google Scholar
Valdés-Martínez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). Acta Cryst. E57, m137–m139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wei, M. & Willett, R. D. (1995). Inorg. Chem. 34, 3780–3782. CSD CrossRef CAS Web of Science Google Scholar
Windholz, M. (1976). The Merck Index, 9th ed. Rahway, New Jersey, USA: Merck & Co., Inc. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As a part of our investigations on the binding modes of 2-aminopyridine with metals, we report here the crystal structure of 2-aminopyridinium (2-aminopyridine)trichloronickel(II).
The asymmetric unit of the title compound contains one 2-aminopyridinium cation and one (2-aminopyridine)trichloronickel(II) anion. Protonation of atom N3 of the uncomplexed 2-aminopyridine results in the widening of the C6—N3—C10 angle to 123.3 (2)°, which is 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles are comparable with those observed in related structures (Bis & Zaworotko, 2005; Smith et al., 2000; Jebas et al., 2006).
In the monomeric complex, the NiII ion is four-coordinated by three Cl anions and the N atom of the 2-aminopyridine ligand, forming a distorted tetrahedral coordination (Fig 1). The Ni—Cl bond lengths (Table 1) are comparable with that reported in the literature (Valdés-Martínez et al., 2001; Batsanov et al., 2001; Sletten & Kovacs, 1993; Corain et al., 1985; Stibrany et al., 2004). The Cl—Ni—Cl bond angles (107.77 (2)° and 108.62 (2)°) are close to the values reported in the literature (Smith et al., 2001; Wei et al., 1995). The dihedral angle between the pyridine and pyridinium rings is 0.9 (2)°.
In the crystal structure, the cations and anionic complexes are stacked into chains along the a, b and c axes and are linked into a three-dimensional framework by N—H···Cl hydrogen bonds (Fig 2).