organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o679-o680

2-Hydr­­oxy-5-nitro­benzaldehyde 2,4-di­nitro­phenyl­hydrazone

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 March 2008; accepted 1 March 2008; online 7 March 2008)

In the title compound, C13H9N5O7, one of the nitro groups is twisted away from the attached benzene ring by 16.21 (8)°. The dihedral angle between the two benzene rings is 4.63 (1)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯O and O—H⋯N hydrogen bonds which generate an S(6) ring motif. The mol­ecules pack as layers parallel to the ab plane; mol­ecules of adjacent layers are linked into chains along the [101] direction through N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Cordis et al. (1998[Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117-123.]); Fun et al. (1996[Fun, H.-K., Sivakumar, K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst. C52, 986-988.]); Guillaumont & Nakamura (2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.]); Hanoune et al. (2006[Hanoune, B., Bris, T. L., Allou, L., Marchand, C. & Calve, S. L. (2006). Atmos. Environ. 40, 5768-5775.]); Lamberton et al. (1974[Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521-1529.]); Niknam et al. (2005[Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236.]); Raj & Kurup (2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Shan, Xu et al. (2003[Shan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173-o1174.]); Shan, Yu et al. (2003[Shan, S., Yu, H.-G., Hu, W.-X. & Xu, D.-J. (2003). Acta Cryst. E59, o1886-o1887.]); Tameem et al. (2007[Tameem, A. A., Salhin, A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2502.]); Uchiyama et al. (2003[Uchiyama, S., Ando, M. & Aoyagi, S. (2003). J. Chromatogr. A996, 95-102.]); Vogel et al. (2000[Vogel, M., Potter, W. & Karst, U. (2000). J. Chromatogr. A886, 303-307.]); Zegota (1999[Zegota, H. (1999). J. Chromatogr. A863, 227-233.]); Zlotorzynska & Lai (1999[Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A853, 487-796.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N5O7

  • Mr = 347.25

  • Monoclinic, P 21 /n

  • a = 12.7543 (5) Å

  • b = 8.1898 (3) Å

  • c = 13.8618 (5) Å

  • β = 112.683 (2)°

  • V = 1335.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100.0 (1) K

  • 0.29 × 0.27 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.985

  • 24539 measured reflections

  • 5195 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.09

  • 5195 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4i 0.89 (2) 2.54 (2) 3.0666 (15) 118 (2)
N1—H1N1⋯O1 0.89 (2) 2.07 (2) 2.6477 (15) 121 (2)
O5—H1O5⋯N2 0.92 (3) 1.82 (3) 2.6656 (14) 150 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Phenylhydrazone derivatives have been synthesized in order to investigate their structures and analytical applications. 2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection, characterization and protection of the carbonyl group of compounds than phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj et al., 2006). In addition, they are used to determine airborne aldehydes and ketones (Vogel et al., 2000) and as detectors of formaldehyde (Hanoune et al., 2006). These compounds can exist as E and Z stereoisomers (Uchiyama et al., 2003). Their existence as a keto tautomer in the solid state with an E configuration across the C—N bond have been reported (Fun et al., 1996). The title compound, whose structure is reported here, is one of the series of phenylhydrazone derivatives that we have prepared; the crystal structures of some of these compounds have been studied previously (Tameem et al., 2007; Salhin et al., 2007).

The bond lengths and angles in the title compound (Fig.1) have normal values. The molecule is nealy planar, with a maximum deviation from the mean plane of 0.487 (1) Å for atom O1. The dihedral angle between the two benzene rings is 4.63 (1)°. The C—N bond lengths in the hydrazone moiety agree well with those reported earlier (Shan, Xu et al., 2003; Shan, Yu et al., 2003). The asymmetry of the exocyclic angles at C7 [C7—C8—C13 = 118.2 (2)° and C7—C8—C9 = 123.3 (2)°] is more pronounced than that at C6 [N1—C6—C1 = 122.7 (1)° and N1—C6—C5 = 120.5 (1)°]. One of the hydrazone N atoms is involved in an O—H···N intramolecular hydrogen bond with the hydroxy group, while the other is involved in an N—H···O intramolecular hydrogen bond with the nitro group. Each of these hydrogen bonds generate an S(6) ring motif (Bernstein et al.,1995).

The molecules are linked into a chain along the [1 0 1] direction through N—H—O hydrogen bonds. The molecules pack as layers parallel to the ab plane. Within the layer, weak π-π interactions are observed between the C1—C6 and C8—C13 benzene rings, with a centroid-centroid distance of 3.7457 (8) Å.

Related literature top

For related literature, see: Cordis et al. (1998); Fun et al. (1996); Guillaumont & Nakamura (2000); Hanoune et al. (2006); Lamberton et al. (1974); Niknam et al. (2005); Raj & Kurup (2007); Salhin et al. (2007); Shan, Xu et al. (2003); Shan, Yu et al. (2003); Tameem et al. (2007); Uchiyama et al. (2003); Vogel et al. (2000); Zegota (1999); Zlotorzynska & Lai (1999). For ring motifs, see: Bernstein et al. (1995).

Experimental top

2,4-Dinitrophenylhydrazine (400 mg, 2 mmol) in concentrated sulfuric acid (5 ml) was slowly added to a solution of 2-hydroxy-5-nitrobenzaldehyde (337 mg, 2 mmol) in ethanol (95%, 20 ml). The mixture was stirred for 15 min, and was left to stand at room temperature for 30 min. The resulting product was filtered and washed with 95% ethanol (20 ml) and the orange powder product was collected. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in ethanol.

Refinement top

O– and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
2-Hydroxy-5-nitrobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H9N5O7F(000) = 712
Mr = 347.25Dx = 1.726 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3255 reflections
a = 12.7543 (5) Åθ = 2.8–33.1°
b = 8.1898 (3) ŵ = 0.14 mm1
c = 13.8618 (5) ÅT = 100 K
β = 112.683 (2)°Block, orange
V = 1335.94 (9) Å30.29 × 0.27 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3513 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.056
ω scansθmax = 33.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.960, Tmax = 0.985k = 1012
24539 measured reflectionsl = 2120
5195 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.0132P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.47 e Å3
5195 reflectionsΔρmin = 0.33 e Å3
234 parameters
Crystal data top
C13H9N5O7V = 1335.94 (9) Å3
Mr = 347.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7543 (5) ŵ = 0.14 mm1
b = 8.1898 (3) ÅT = 100 K
c = 13.8618 (5) Å0.29 × 0.27 × 0.11 mm
β = 112.683 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5195 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3513 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.056
24539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.47 e Å3
5195 reflectionsΔρmin = 0.33 e Å3
234 parameters
Special details top

Geometry. Experimental. The low-temperature data was collected with the Oxford Crysosystem Cobra low-temperature attachement.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71240 (8)0.91583 (13)0.22343 (8)0.0228 (2)
O20.61439 (9)1.12841 (14)0.22968 (8)0.0282 (2)
O30.39947 (10)1.41385 (15)0.08171 (9)0.0340 (3)
O40.45224 (10)1.41148 (14)0.21219 (8)0.0307 (3)
O50.94762 (8)0.81549 (12)0.11896 (7)0.0189 (2)
O61.34597 (9)0.33913 (14)0.11735 (8)0.0300 (3)
O71.29887 (9)0.41281 (13)0.24496 (8)0.0259 (2)
N10.80661 (9)0.91651 (14)0.08340 (9)0.0164 (2)
N20.87737 (9)0.86266 (13)0.03680 (8)0.0157 (2)
N30.66026 (9)1.04241 (14)0.18460 (8)0.0187 (2)
N40.46053 (10)1.36459 (15)0.12555 (9)0.0208 (2)
N51.28791 (9)0.41996 (14)0.15301 (9)0.0184 (2)
C10.64902 (11)1.08800 (16)0.07968 (9)0.0160 (2)
C20.56488 (11)1.20121 (16)0.02874 (10)0.0179 (2)
H2A0.52091.24650.0620.021*
C30.54779 (10)1.24505 (16)0.07199 (10)0.0172 (2)
C40.61284 (11)1.17695 (16)0.12363 (10)0.0171 (2)
H4A0.59931.20670.19210.02*
C50.69644 (11)1.06624 (16)0.07233 (10)0.0165 (2)
H5A0.73921.02110.10690.02*
C60.71925 (10)1.01896 (15)0.03210 (9)0.0150 (2)
C70.96469 (10)0.78013 (15)0.09632 (9)0.0151 (2)
H7A0.97820.76780.16680.018*
C81.04195 (10)0.70636 (15)0.05474 (9)0.0142 (2)
C91.03109 (10)0.72528 (15)0.05001 (9)0.0151 (2)
C101.10725 (11)0.64726 (16)0.08556 (10)0.0168 (2)
H10A1.10090.66340.1540.02*
C111.19152 (10)0.54678 (16)0.02006 (10)0.0169 (2)
H11A1.24120.49330.0440.02*
C121.20051 (10)0.52732 (15)0.08265 (10)0.0159 (2)
C131.12875 (10)0.60635 (15)0.12052 (10)0.0153 (2)
H13A1.13820.5930.190.018*
H1N10.8262 (16)0.891 (2)0.1508 (16)0.038 (5)*
H1O50.905 (2)0.854 (3)0.082 (2)0.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (5)0.0253 (5)0.0220 (5)0.0056 (4)0.0118 (4)0.0049 (4)
O20.0377 (6)0.0307 (6)0.0253 (5)0.0079 (5)0.0222 (5)0.0004 (4)
O30.0317 (6)0.0461 (7)0.0298 (6)0.0207 (5)0.0181 (5)0.0077 (5)
O40.0379 (6)0.0342 (6)0.0228 (5)0.0153 (5)0.0150 (5)0.0087 (4)
O50.0201 (4)0.0210 (5)0.0162 (4)0.0047 (4)0.0076 (3)0.0023 (3)
O60.0284 (5)0.0335 (6)0.0285 (5)0.0145 (5)0.0114 (4)0.0014 (4)
O70.0269 (5)0.0307 (6)0.0197 (5)0.0070 (4)0.0086 (4)0.0059 (4)
N10.0163 (5)0.0196 (5)0.0155 (5)0.0030 (4)0.0085 (4)0.0005 (4)
N20.0158 (5)0.0157 (5)0.0177 (5)0.0000 (4)0.0089 (4)0.0017 (4)
N30.0193 (5)0.0220 (6)0.0183 (5)0.0015 (4)0.0112 (4)0.0006 (4)
N40.0209 (5)0.0224 (6)0.0204 (5)0.0049 (4)0.0097 (4)0.0004 (4)
N50.0170 (5)0.0177 (5)0.0203 (5)0.0010 (4)0.0070 (4)0.0005 (4)
C10.0177 (5)0.0183 (6)0.0144 (5)0.0009 (4)0.0088 (4)0.0011 (4)
C20.0176 (5)0.0191 (6)0.0195 (6)0.0006 (5)0.0099 (5)0.0033 (5)
C30.0161 (5)0.0174 (6)0.0194 (6)0.0029 (5)0.0081 (5)0.0005 (4)
C40.0194 (6)0.0174 (6)0.0158 (5)0.0005 (5)0.0085 (4)0.0005 (4)
C50.0169 (5)0.0185 (6)0.0160 (5)0.0001 (5)0.0085 (4)0.0023 (4)
C60.0147 (5)0.0150 (6)0.0163 (5)0.0019 (4)0.0070 (4)0.0017 (4)
C70.0161 (5)0.0151 (6)0.0158 (5)0.0009 (4)0.0081 (4)0.0004 (4)
C80.0151 (5)0.0143 (5)0.0142 (5)0.0009 (4)0.0068 (4)0.0013 (4)
C90.0156 (5)0.0142 (6)0.0156 (5)0.0007 (4)0.0062 (4)0.0002 (4)
C100.0190 (6)0.0181 (6)0.0156 (5)0.0011 (5)0.0093 (4)0.0010 (4)
C110.0159 (5)0.0174 (6)0.0200 (6)0.0012 (4)0.0096 (5)0.0024 (4)
C120.0134 (5)0.0140 (6)0.0190 (6)0.0010 (4)0.0048 (4)0.0005 (4)
C130.0160 (5)0.0147 (6)0.0161 (5)0.0009 (4)0.0072 (4)0.0000 (4)
Geometric parameters (Å, º) top
O1—N31.2372 (15)C2—H2A0.93
O2—N31.2291 (15)C3—C41.4035 (18)
O3—N41.2262 (15)C4—C51.3711 (18)
O4—N41.2259 (15)C4—H4A0.93
O5—C91.3446 (15)C5—C61.4159 (17)
O5—H1O50.92 (3)C5—H5A0.93
O6—N51.2302 (15)C7—C81.4514 (17)
O7—N51.2288 (14)C7—H7A0.93
N1—C61.3565 (16)C8—C131.3962 (17)
N1—N21.3697 (15)C8—C91.4128 (16)
N1—H1N10.89 (2)C9—C101.4014 (18)
N2—C71.2920 (16)C10—C111.3799 (18)
N3—C11.4541 (16)C10—H10A0.93
N4—C31.4530 (17)C11—C121.3927 (17)
N5—C121.4589 (16)C11—H11A0.93
C1—C21.3876 (18)C12—C131.3795 (17)
C1—C61.4187 (17)C13—H13A0.93
C2—C31.3753 (17)
C9—O5—H1O5105.4 (15)C4—C5—H5A119.2
C6—N1—N2120.62 (11)C6—C5—H5A119.2
C6—N1—H1N1122.4 (13)N1—C6—C5120.57 (11)
N2—N1—H1N1116.6 (13)N1—C6—C1122.75 (11)
C7—N2—N1115.45 (10)C5—C6—C1116.66 (11)
O2—N3—O1122.71 (11)N2—C7—C8120.94 (11)
O2—N3—C1118.60 (11)N2—C7—H7A119.5
O1—N3—C1118.64 (11)C8—C7—H7A119.5
O4—N4—O3123.45 (12)C13—C8—C9118.32 (11)
O4—N4—C3118.12 (11)C13—C8—C7118.27 (11)
O3—N4—C3118.43 (11)C9—C8—C7123.37 (11)
O7—N5—O6123.08 (11)O5—C9—C10117.82 (11)
O7—N5—C12118.31 (11)O5—C9—C8121.85 (11)
O6—N5—C12118.60 (11)C10—C9—C8120.32 (11)
C2—C1—C6122.19 (11)C11—C10—C9120.67 (11)
C2—C1—N3116.05 (11)C11—C10—H10A119.7
C6—C1—N3121.76 (11)C9—C10—H10A119.7
C3—C2—C1118.67 (12)C10—C11—C12118.49 (12)
C3—C2—H2A120.7C10—C11—H11A120.8
C1—C2—H2A120.7C12—C11—H11A120.8
C2—C3—C4121.38 (12)C13—C12—C11122.02 (11)
C2—C3—N4119.01 (11)C13—C12—N5118.45 (11)
C4—C3—N4119.61 (11)C11—C12—N5119.53 (11)
C5—C4—C3119.51 (12)C12—C13—C8120.14 (11)
C5—C4—H4A120.2C12—C13—H13A119.9
C3—C4—H4A120.2C8—C13—H13A119.9
C4—C5—C6121.55 (12)
C6—N1—N2—C7172.84 (11)C2—C1—C6—C52.48 (18)
O2—N3—C1—C215.33 (17)N3—C1—C6—C5176.74 (11)
O1—N3—C1—C2162.33 (11)N1—N2—C7—C8175.64 (11)
O2—N3—C1—C6165.40 (12)N2—C7—C8—C13174.24 (11)
O1—N3—C1—C616.94 (18)N2—C7—C8—C93.12 (19)
C6—C1—C2—C31.35 (19)C13—C8—C9—O5177.95 (11)
N3—C1—C2—C3177.92 (11)C7—C8—C9—O50.58 (19)
C1—C2—C3—C40.5 (2)C13—C8—C9—C101.09 (18)
C1—C2—C3—N4179.46 (11)C7—C8—C9—C10178.46 (11)
O4—N4—C3—C2174.55 (13)O5—C9—C10—C11176.95 (11)
O3—N4—C3—C25.12 (19)C8—C9—C10—C112.12 (19)
O4—N4—C3—C45.37 (19)C9—C10—C11—C121.25 (19)
O3—N4—C3—C4174.96 (13)C10—C11—C12—C130.63 (19)
C2—C3—C4—C51.0 (2)C10—C11—C12—N5179.16 (11)
N4—C3—C4—C5178.90 (11)O7—N5—C12—C134.77 (17)
C3—C4—C5—C60.22 (19)O6—N5—C12—C13174.17 (12)
N2—N1—C6—C52.89 (18)O7—N5—C12—C11175.44 (12)
N2—N1—C6—C1175.04 (11)O6—N5—C12—C115.62 (18)
C4—C5—C6—N1176.16 (12)C11—C12—C13—C81.65 (19)
C4—C5—C6—C11.89 (18)N5—C12—C13—C8178.14 (11)
C2—C1—C6—N1175.52 (12)C9—C8—C13—C120.75 (18)
N3—C1—C6—N15.25 (19)C7—C8—C13—C12176.75 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.89 (2)2.54 (2)3.0666 (15)118 (2)
N1—H1N1···O10.89 (2)2.07 (2)2.6477 (15)121 (2)
O5—H1O5···N20.92 (3)1.82 (3)2.6656 (14)150 (2)
Symmetry code: (i) x+1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9N5O7
Mr347.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7543 (5), 8.1898 (3), 13.8618 (5)
β (°) 112.683 (2)
V3)1335.94 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.29 × 0.27 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
24539, 5195, 3513
Rint0.056
(sin θ/λ)max1)0.775
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.09
No. of reflections5195
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.89 (2)2.54 (2)3.0666 (15)118 (2)
N1—H1N1···O10.89 (2)2.07 (2)2.6477 (15)121 (2)
O5—H1O5···N20.92 (3)1.82 (3)2.6656 (14)150 (2)
Symmetry code: (i) x+1/2, y+5/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Sivakumar, K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst. C52, 986–988.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationHanoune, B., Bris, T. L., Allou, L., Marchand, C. & Calve, S. L. (2006). Atmos. Environ. 40, 5768–5775.  Web of Science CrossRef CAS Google Scholar
First citationLamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521–1529.  CrossRef CAS Google Scholar
First citationNiknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231–2236.  Web of Science CrossRef CAS Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173–o1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Yu, H.-G., Hu, W.-X. & Xu, D.-J. (2003). Acta Cryst. E59, o1886–o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUchiyama, S., Ando, M. & Aoyagi, S. (2003). J. Chromatogr. A996, 95–102.  Web of Science CrossRef Google Scholar
First citationVogel, M., Potter, W. & Karst, U. (2000). J. Chromatogr. A886, 303–307.  Web of Science CrossRef Google Scholar
First citationZegota, H. (1999). J. Chromatogr. A863, 227–233.  Web of Science CrossRef Google Scholar
First citationZlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A853, 487–796.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o679-o680
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds