metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­benzoato)bis­(5-methyl-2-pyridylamine)silver(I)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: tianyq08@163.com

(Received 19 March 2008; accepted 25 March 2008; online 29 March 2008)

The title compound, [Ag(C7H4ClO2)(C6H8N2)2], is a mononuclear silver(I) complex. The AgI atom is three-coordinated by two pyridine N atoms from two 5-methyl­pyridin-2-ylamine ligands and by one O atom of a 4-chloro­benzoate ligand, forming a distorted T-shaped coordination. In the crystal structure, the mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For related literature, see: Bi et al. (2002[Bi, W., Sun, D., Cao, R. & Hong, M. (2002). Acta Cryst. E58, m324-m325.]); Deng et al. (2004[Deng, B., Liu, Z.-D., Liu, X.-Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1444-m1446.]); Jones et al. (2006[Jones, P. G., Crespo, O., Gimeno, M. C. & Laguna, A. (2006). Acta Cryst. C62, m411-m412.]); Khan et al. (2005[Khan, M. A. H., Prasad, T. K. & Rajasekharan, M. V. (2005). Acta Cryst. C61, m281-m283.]); Kristiansson (2000[Kristiansson, O. (2000). Acta Cryst. C56, 165-167.]); Li et al. (2007[Li, Y.-F., Pan, Z.-H. & Lou, T.-J. (2007). Acta Cryst. C63, m516-m518.]); Odoko et al. (2007[Odoko, M., Ise, T. & Okabe, N. (2007). Acta Cryst. C63, m22-m26.]); Sailaja et al. (2001[Sailaja, S., Swarnabala, G. & Rajasekharan, M. V. (2001). Acta Cryst. C57, 1162-1165.]); Wang & Okabe (2004[Wang, Y. & Okabe, N. (2004). Acta Cryst. C60, m605-m608.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H4ClO2)(C6H8N2)2]

  • Mr = 479.71

  • Monoclinic, P 21 /n

  • a = 15.983 (3) Å

  • b = 5.7428 (9) Å

  • c = 21.703 (4) Å

  • β = 98.460 (2)°

  • V = 1970.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 298 (2) K

  • 0.37 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.704

  • 13465 measured reflections

  • 4064 independent reflections

  • 3277 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.03

  • 4064 reflections

  • 258 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.179 (2)
Ag1—N3 2.193 (2)
Ag1—O1 2.647 (2)
N1—Ag1—N3 151.99 (9)
N1—Ag1—O1 103.05 (9)
N3—Ag1—O1 104.89 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.88 (3) 2.11 (3) 2.977 (4) 169 (4)
N2—H2B⋯O2i 0.89 (1) 1.94 (1) 2.822 (4) 174 (3)
N4—H4A⋯O1 0.88 (3) 2.09 (3) 2.966 (4) 167 (4)
N4—H4B⋯O1ii 0.88 (1) 2.09 (3) 2.955 (3) 167 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Silver(I) complexes with carboxylate ligands and amine compounds have been widely investigated due to their versatile structures (Odoko et al., 2007; Li et al., 2007; Jones et al., 2006; Bi et al., 2002). We report herein the crystal structure of the title silver(I) complex.

The title compound is a mononuclear silver(I) complex (Fig. 1). The AgI atom is three-coordinated by two pyridine N atoms from two 5-methylpyridin-2-ylamine ligands and by one O atom of a 4-chlorobenzoate ligand, forming a distorted T-shaped coordination, the distortion being caused by the weak coordination of the carboxylate O atom (Ag1—O1 = 2.647 (2) Å, Table 1). The Ag—N bond lengths (Table 1) are comparable with the values observed in other silver(I) complexes (Kristiansson, 2000; Wang & Okabe, 2004; Sailaja et al., 2001; Khan et al., 2005; Deng et al., 2004).

In the crystal structure, the molecules are linked through intermolecular N—H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Related literature top

For related literature, see: Bi et al. (2002); Deng et al. (2004); Jones et al. (2006); Khan et al. (2005); Kristiansson (2000); Li et al. (2007); Odoko et al. (2007); Sailaja et al. (2001); Wang & Okabe (2004).

Experimental top

Ag2O (0.1 mmol, 23.2 mg) and 4-chlorobenzoic acid (0.1 mmol, 15.6 mg) were dissolved in an ammonia solution (10 ml, 30%), and the mixture was stirred for 20 min at room temperature. To the above mixture was added with stirring a methanol solution (3 ml) of 5-methylpyridin-2-ylamine (0.2 mmol, 21.6 mg). The final mixture was stirred for 30 min at room temperature. The resulting clear colourless solution was kept in dark for 12 d, yielding colourless block-shaped crystals.

Refinement top

Atoms H2A, H2B, H4A and H4B were located in a difference Fourier map and refined isotropically, with N—H and H···H distances restrained to 0.90 (1) Å and 1.43 (2) Å, respectively. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 5.1; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
(4-Chlorobenzoato)bis(5-methyl-2-pyridylamine)silver(I) top
Crystal data top
[Ag(C7H4ClO2)(C6H8N2)2]F(000) = 968
Mr = 479.71Dx = 1.617 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3734 reflections
a = 15.983 (3) Åθ = 2.5–24.9°
b = 5.7428 (9) ŵ = 1.18 mm1
c = 21.703 (4) ÅT = 298 K
β = 98.460 (2)°Block, colourless
V = 1970.4 (6) Å30.37 × 0.35 × 0.32 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4064 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1920
Tmin = 0.669, Tmax = 0.704k = 77
13465 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.4221P]
where P = (Fo2 + 2Fc2)/3
4064 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ag(C7H4ClO2)(C6H8N2)2]V = 1970.4 (6) Å3
Mr = 479.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.983 (3) ŵ = 1.18 mm1
b = 5.7428 (9) ÅT = 298 K
c = 21.703 (4) Å0.37 × 0.35 × 0.32 mm
β = 98.460 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3277 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.704Rint = 0.032
13465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
4064 reflectionsΔρmin = 0.34 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.291478 (15)0.09298 (4)0.077611 (11)0.05012 (11)
Cl10.69700 (7)0.65902 (19)0.36548 (5)0.0793 (3)
O10.35007 (14)0.2179 (4)0.19330 (10)0.0573 (6)
O20.45197 (17)0.0110 (5)0.16007 (13)0.0760 (8)
N10.34955 (14)0.3452 (4)0.02193 (11)0.0388 (5)
N20.39194 (19)0.5847 (5)0.10583 (14)0.0556 (7)
N30.20646 (14)0.2005 (4)0.08709 (11)0.0432 (6)
N40.2241 (2)0.1612 (6)0.19393 (13)0.0605 (8)
C10.6161 (2)0.5050 (6)0.31981 (14)0.0507 (8)
C20.5373 (2)0.6012 (6)0.30750 (15)0.0542 (8)
H20.52580.74320.32510.065*
C30.4749 (2)0.4848 (6)0.26869 (14)0.0491 (7)
H30.42100.54890.26020.059*
C40.49170 (19)0.2737 (5)0.24224 (13)0.0427 (7)
C50.5713 (2)0.1802 (6)0.25682 (16)0.0554 (8)
H50.58310.03710.24000.066*
C60.6338 (2)0.2935 (7)0.29568 (17)0.0631 (9)
H60.68730.22770.30540.076*
C70.4262 (2)0.1546 (6)0.19559 (14)0.0481 (8)
C80.38570 (17)0.5444 (5)0.04449 (15)0.0417 (7)
C90.41727 (18)0.7050 (5)0.00414 (17)0.0501 (8)
H90.44120.84450.01980.060*
C100.41269 (19)0.6557 (6)0.05702 (17)0.0525 (8)
H100.43370.76130.08340.063*
C110.37643 (19)0.4460 (6)0.08121 (15)0.0465 (7)
C120.34602 (17)0.3021 (5)0.03981 (13)0.0414 (7)
H120.32090.16360.05510.050*
C130.3731 (2)0.3791 (7)0.14840 (16)0.0674 (11)
H13A0.34710.22880.15530.101*
H13B0.42950.37340.15860.101*
H13C0.34060.49230.17430.101*
C140.19164 (17)0.2802 (6)0.14244 (14)0.0438 (7)
C150.1459 (2)0.4866 (6)0.14600 (16)0.0535 (8)
H150.13540.54050.18450.064*
C160.1171 (2)0.6072 (6)0.09412 (17)0.0548 (8)
H160.08720.74470.09700.066*
C170.13206 (19)0.5268 (6)0.03557 (15)0.0493 (8)
C180.17643 (19)0.3242 (6)0.03562 (15)0.0477 (7)
H180.18680.26690.00260.057*
C190.1021 (3)0.6605 (7)0.02362 (18)0.0726 (11)
H19A0.10960.56670.05900.109*
H19B0.04330.69840.02530.109*
H19C0.13440.80130.02410.109*
H4B0.209 (2)0.185 (6)0.2308 (9)0.080*
H4A0.255 (2)0.032 (4)0.1940 (16)0.080*
H2B0.407 (2)0.720 (3)0.1241 (14)0.080*
H2A0.374 (2)0.489 (5)0.1330 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05372 (17)0.04898 (17)0.04972 (16)0.01056 (11)0.01445 (11)0.00527 (11)
Cl10.0798 (7)0.0821 (7)0.0669 (6)0.0191 (5)0.0192 (5)0.0079 (5)
O10.0522 (13)0.0746 (17)0.0462 (13)0.0174 (12)0.0110 (10)0.0097 (12)
O20.0837 (18)0.0637 (16)0.0788 (18)0.0047 (14)0.0062 (14)0.0372 (15)
N10.0404 (13)0.0345 (13)0.0426 (14)0.0033 (10)0.0100 (10)0.0007 (11)
N20.0648 (18)0.0463 (17)0.0552 (18)0.0051 (14)0.0075 (14)0.0123 (14)
N30.0432 (13)0.0454 (15)0.0419 (14)0.0063 (11)0.0090 (11)0.0021 (12)
N40.0729 (19)0.070 (2)0.0420 (16)0.0249 (16)0.0199 (14)0.0044 (15)
C10.060 (2)0.054 (2)0.0359 (16)0.0103 (17)0.0015 (14)0.0007 (15)
C20.066 (2)0.052 (2)0.0465 (18)0.0065 (17)0.0145 (16)0.0162 (15)
C30.0491 (18)0.0522 (19)0.0472 (18)0.0026 (15)0.0113 (14)0.0094 (15)
C40.0540 (17)0.0401 (17)0.0349 (15)0.0079 (14)0.0098 (13)0.0005 (13)
C50.070 (2)0.0414 (18)0.053 (2)0.0066 (17)0.0023 (16)0.0042 (16)
C60.062 (2)0.057 (2)0.065 (2)0.0071 (18)0.0105 (17)0.0010 (19)
C70.063 (2)0.0435 (18)0.0385 (17)0.0144 (15)0.0093 (15)0.0058 (14)
C80.0382 (15)0.0341 (17)0.0530 (18)0.0034 (12)0.0073 (13)0.0022 (14)
C90.0438 (17)0.0309 (17)0.076 (2)0.0001 (13)0.0093 (15)0.0040 (16)
C100.0420 (17)0.049 (2)0.069 (2)0.0037 (14)0.0166 (15)0.0233 (17)
C110.0390 (16)0.054 (2)0.0481 (18)0.0057 (14)0.0115 (13)0.0076 (15)
C120.0390 (15)0.0392 (17)0.0466 (17)0.0012 (13)0.0079 (12)0.0022 (14)
C130.061 (2)0.097 (3)0.046 (2)0.001 (2)0.0159 (17)0.0094 (19)
C140.0403 (15)0.0489 (19)0.0448 (17)0.0016 (14)0.0147 (13)0.0035 (15)
C150.058 (2)0.0520 (19)0.054 (2)0.0088 (16)0.0204 (15)0.0091 (17)
C160.0476 (18)0.047 (2)0.072 (2)0.0092 (15)0.0146 (16)0.0004 (17)
C170.0412 (16)0.0497 (19)0.057 (2)0.0005 (14)0.0065 (14)0.0085 (16)
C180.0474 (17)0.055 (2)0.0409 (17)0.0020 (15)0.0085 (13)0.0045 (15)
C190.072 (2)0.071 (3)0.071 (3)0.008 (2)0.001 (2)0.021 (2)
Geometric parameters (Å, º) top
Ag1—N12.179 (2)C5—H50.93
Ag1—N32.193 (2)C6—H60.93
Ag1—O12.647 (2)C8—C91.415 (4)
Cl1—C11.748 (3)C9—C101.348 (5)
O1—C71.263 (4)C9—H90.93
O2—C71.240 (4)C10—C111.404 (5)
N1—C81.342 (4)C10—H100.93
N1—C121.356 (4)C11—C121.362 (4)
N2—C81.340 (4)C11—C131.501 (5)
N2—H2B0.888 (10)C12—H120.93
N2—H2A0.88 (3)C13—H13A0.96
N3—C141.339 (4)C13—H13B0.96
N3—C181.351 (4)C13—H13C0.96
N4—C141.347 (4)C14—C151.401 (4)
N4—H4B0.883 (10)C15—C161.344 (5)
N4—H4A0.88 (3)C15—H150.93
C1—C21.366 (5)C16—C171.405 (5)
C1—C61.369 (5)C16—H160.93
C2—C31.379 (4)C17—C181.363 (5)
C2—H20.93C17—C191.513 (5)
C3—C41.384 (4)C18—H180.93
C3—H30.93C19—H19A0.96
C4—C51.375 (4)C19—H19B0.96
C4—C71.510 (4)C19—H19C0.96
C5—C61.373 (5)
N1—Ag1—N3151.99 (9)C10—C9—C8120.0 (3)
N1—Ag1—O1103.05 (9)C10—C9—H9120.0
N3—Ag1—O1104.89 (9)C8—C9—H9120.0
C8—N1—C12118.0 (3)C9—C10—C11120.5 (3)
C8—N1—Ag1124.1 (2)C9—C10—H10119.7
C12—N1—Ag1117.89 (19)C11—C10—H10119.7
C8—N2—H2B125 (2)C12—C11—C10116.2 (3)
C8—N2—H2A125 (2)C12—C11—C13121.3 (3)
H2B—N2—H2A110 (2)C10—C11—C13122.4 (3)
C14—N3—C18118.3 (3)N1—C12—C11125.1 (3)
C14—N3—Ag1122.7 (2)N1—C12—H12117.5
C18—N3—Ag1118.44 (19)C11—C12—H12117.5
C14—N4—H4B123 (2)C11—C13—H13A109.5
C14—N4—H4A125 (2)C11—C13—H13B109.5
H4B—N4—H4A111 (2)H13A—C13—H13B109.5
C2—C1—C6121.4 (3)C11—C13—H13C109.5
C2—C1—Cl1119.4 (3)H13A—C13—H13C109.5
C6—C1—Cl1119.2 (3)H13B—C13—H13C109.5
C1—C2—C3119.1 (3)N3—C14—N4118.2 (3)
C1—C2—H2120.4N3—C14—C15120.1 (3)
C3—C2—H2120.4N4—C14—C15121.6 (3)
C2—C3—C4120.7 (3)C16—C15—C14120.5 (3)
C2—C3—H3119.6C16—C15—H15119.8
C4—C3—H3119.6C14—C15—H15119.8
C5—C4—C3118.4 (3)C15—C16—C17120.4 (3)
C5—C4—C7120.3 (3)C15—C16—H16119.8
C3—C4—C7121.2 (3)C17—C16—H16119.8
C6—C5—C4121.4 (3)C18—C17—C16115.9 (3)
C6—C5—H5119.3C18—C17—C19122.3 (3)
C4—C5—H5119.3C16—C17—C19121.8 (3)
C1—C6—C5118.9 (3)N3—C18—C17124.8 (3)
C1—C6—H6120.6N3—C18—H18117.6
C5—C6—H6120.6C17—C18—H18117.6
O2—C7—O1125.0 (3)C17—C19—H19A109.5
O2—C7—C4117.2 (3)C17—C19—H19B109.5
O1—C7—C4117.7 (3)H19A—C19—H19B109.5
N2—C8—N1118.3 (3)C17—C19—H19C109.5
N2—C8—C9121.4 (3)H19A—C19—H19C109.5
N1—C8—C9120.2 (3)H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.88 (3)2.11 (3)2.977 (4)169 (4)
N2—H2B···O2i0.89 (1)1.94 (1)2.822 (4)174 (3)
N4—H4A···O10.88 (3)2.09 (3)2.966 (4)167 (4)
N4—H4B···O1ii0.88 (1)2.09 (3)2.955 (3)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C7H4ClO2)(C6H8N2)2]
Mr479.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.983 (3), 5.7428 (9), 21.703 (4)
β (°) 98.460 (2)
V3)1970.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.37 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.669, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
13465, 4064, 3277
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.03
No. of reflections4064
No. of parameters258
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 5.1; Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N12.179 (2)Ag1—O12.647 (2)
Ag1—N32.193 (2)
N1—Ag1—N3151.99 (9)N3—Ag1—O1104.89 (9)
N1—Ag1—O1103.05 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.88 (3)2.11 (3)2.977 (4)169 (4)
N2—H2B···O2i0.89 (1)1.94 (1)2.822 (4)174 (3)
N4—H4A···O10.88 (3)2.09 (3)2.966 (4)167 (4)
N4—H4B···O1ii0.88 (1)2.09 (3)2.955 (3)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Gansu Young Foundation of China (grant No. 20635) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationBi, W., Sun, D., Cao, R. & Hong, M. (2002). Acta Cryst. E58, m324–m325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, B., Liu, Z.-D., Liu, X.-Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1444–m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Crespo, O., Gimeno, M. C. & Laguna, A. (2006). Acta Cryst. C62, m411–m412.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. H., Prasad, T. K. & Rajasekharan, M. V. (2005). Acta Cryst. C61, m281–m283.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKristiansson, O. (2000). Acta Cryst. C56, 165–167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-F., Pan, Z.-H. & Lou, T.-J. (2007). Acta Cryst. C63, m516–m518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdoko, M., Ise, T. & Okabe, N. (2007). Acta Cryst. C63, m22–m26.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSailaja, S., Swarnabala, G. & Rajasekharan, M. V. (2001). Acta Cryst. C57, 1162–1165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. & Okabe, N. (2004). Acta Cryst. C60, m605–m608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds