organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4-Tri­bromo­thio­phene

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 7 March 2008; accepted 9 March 2008; online 14 March 2008)

In the title compound, C4HBr3S, there are two essentially planar mol­ecules in the asymmetric unit. In the crystal structure, bifurcated C—H⋯Br hydrogen bonds link the mol­ecules into chains. Weak Br⋯Br inter­actions [Br⋯Br = 3.634 (4)–3.691 (4) Å] then lead to undulating sheets in the bc plane.

Related literature

For related polybromo­thio­phene structures, see: Helmholdt et al. (2007[Helmholdt, R. B., Sonneveld, E. J., Velde, C. M. L. V., Blockhuys, F., Lenstra, A. T. H., Geise, H. J. & Peschar, R. (2007). Acta Cryst. B63, 783-790.]); Murakami et al. (2002[Murakami, F., Sasaki, S. & Yoshifuji, M. (2002). Angew. Chem. Int. Ed. 41, 2574-2576.]); Xie et al. (1997[Xie, Y., Ng, S.-C., Wu, B.-M., Xue, F., Mak, T. C. W. & Hor, T. S. A. (1997). J. Organomet. Chem. 531, 175-181.], 1998[Xie, Y., Wu, B.-M., Xue, F., Ng, S.-C., Mak, T. C. W. & Hor, T. S. A. (1998). Organometallics, 17, 3988-3995.]). For information on halogen⋯halogen contacts, see: Pedireddi et al. (1994[Pedireddi, V. R., Shekhar Reddy, D., Satish Goud, B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2359.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C4HBr3S

  • Mr = 320.84

  • Orthorhombic, P n a 21

  • a = 12.4529 (11) Å

  • b = 3.9724 (4) Å

  • c = 28.846 (3) Å

  • V = 1426.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 17.14 mm−1

  • T = 91 (2) K

  • 0.17 × 0.06 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.434, Tmax = 0.710

  • 12082 measured reflections

  • 2163 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 23.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.172

  • S = 0.86

  • 2163 reflections

  • 109 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 3.39 e Å−3

  • Δρmin = −1.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1050 Friedel pairs

  • Flack parameter: 0.11 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯Br3Ai 0.95 3.04 3.89 (3) 149
C1A—H1A⋯Br4Ai 0.95 2.96 3.68 (3) 134
C1B—H1B⋯Br3Bii 0.95 2.93 3.79 (3) 151
C1B—H1B⋯Br4Bii 0.95 2.97 3.66 (2) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Brominated thiophenes are very important intermediates in the construction of thiophene oligomers and polymers for use in optoelectronics. In some cases, it is important to have one or two α-positions free for further oxidative coupling. The 2,3,4-tribromo derivative is not easy to access, as the 2- and 5-positions are normally substituted first, and so it is normally synthesized via debromination from tetrabromothiophene (Xie et al., 1998).

The asymmetric unit of the title compound, (I), C8H2Br6S2, consists of two discrete tribromothiophene molecules A & B (Fig. 1). Each molecule is essentially planar with r.m.s. deviations from the mean planes through all non-hydrogen atoms of 0.0194 and 0.0286 Å for A and B respectively. The dihedral angle between the A and B ring planes is 0.9 (4)° but they are well separated with a centroid to centroid distance of 6.3 Å.

In the crystal of (I) bifurcated C—H···Br hydrogen bonds (Table 1) form chains of like molecules that pack in an obverse fashion along a. The structure is further stabilized by an extensive network of weak Br···Br interactions with Br···Br distances in the range 3.634 (4)Å (Br3A···Br2Bi, i = 1 - x, 1 - y, -1/2 + z; θ1 = 156.7° and θ2 = 117.5°) (Pedireddi et al., 1994) to 3.691 (4)Å (Br3A···Br2Aii ii = -1/2 + x, 1/2 - y, z; θ1 = 161.8° and θ2 = 84.7°). These contacts link the chains of molecules into undulating sheets in the bc plane (Fig. 2).

Related literature top

For related polybromothiophene structures, see: Helmholdt et al. (2007); Murakami et al. (2002); Xie et al. (1997, 1998). For information on halogen···halogen contacts, see: Pedireddi et al. (1994). For related literature, see: Allen (2002).

Experimental top

2,3,4-Tribromothiophene, prepared by the method of Xie et al. (1998), was dissolved in methanol. Colourless plates of (I) were grown by slow diffusion of water into the solution.

Refinement top

The crystals were small and very weakly diffracting and little data were obtainable beyond θ = 23°. This clearly contributes to the relatively high R factor and poor precision of the data in this determination. The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). A number of high peaks were found in the final difference map in the vicinity of the Br atoms in both molecules. The deepest hole is 0.98Å from Br3B.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 (Bruker 2006) and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with 50% displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of (I) with C—H···Br hydrogen bonds and Br···Br interactions drawn as dashed lines.
2,3,4-Tribromothiophene top
Crystal data top
C4HBr3SF(000) = 1168
Mr = 320.84Dx = 2.987 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1448 reflections
a = 12.4529 (11) Åθ = 3.4–21.9°
b = 3.9724 (4) ŵ = 17.14 mm1
c = 28.846 (3) ÅT = 91 K
V = 1426.9 (2) Å3Plate, colourless
Z = 80.17 × 0.06 × 0.02 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2163 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω scansθmax = 23.7°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1414
Tmin = 0.434, Tmax = 0.710k = 44
12082 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1079P)2 + 95.665P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2163 reflectionsΔρmax = 3.39 e Å3
109 parametersΔρmin = 1.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (6)
Crystal data top
C4HBr3SV = 1426.9 (2) Å3
Mr = 320.84Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 12.4529 (11) ŵ = 17.14 mm1
b = 3.9724 (4) ÅT = 91 K
c = 28.846 (3) Å0.17 × 0.06 × 0.02 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1852 reflections with I > 2σ(I)
Tmin = 0.434, Tmax = 0.710Rint = 0.092
12082 measured reflectionsθmax = 23.7°
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1079P)2 + 95.665P]
where P = (Fo2 + 2Fc2)/3
S = 0.86Δρmax = 3.39 e Å3
2163 reflectionsΔρmin = 1.30 e Å3
109 parametersAbsolute structure: Flack (1983), 1050 Friedel pairs
1 restraintAbsolute structure parameter: 0.11 (6)
Special details top

Experimental. As the crystals were small and very weakly diffracting, data were collected using 55 sec exposures per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.6553 (5)0.6506 (19)0.2528 (2)0.0307 (15)
C1A0.723 (2)0.726 (7)0.2042 (10)0.0307 (15)
H1A0.79160.83110.20150.037*
C2A0.6527 (19)0.592 (6)0.1649 (8)0.0229 (6)
Br2A0.69172 (17)0.6009 (6)0.10260 (10)0.0229 (6)
C3A0.5527 (17)0.441 (7)0.1819 (9)0.021 (5)
Br3A0.44805 (17)0.2573 (6)0.14378 (10)0.0183 (7)
C4A0.5485 (18)0.455 (6)0.2298 (8)0.0197 (6)
Br4A0.43447 (16)0.3131 (7)0.26658 (9)0.0197 (6)
S1B0.6092 (5)0.3531 (17)0.3764 (2)0.0268 (14)
C1B0.542 (2)0.270 (6)0.4273 (10)0.0268 (14)
H1B0.47430.16170.43110.032*
C2B0.6136 (18)0.407 (7)0.4637 (8)0.0227 (6)
Br2B0.57498 (17)0.4088 (6)0.52692 (10)0.0227 (6)
C3B0.7118 (17)0.544 (6)0.4479 (8)0.016 (5)
Br3B0.82097 (17)0.7329 (6)0.48587 (10)0.0193 (7)
C4B0.7212 (17)0.523 (6)0.4001 (8)0.0206 (6)
Br4B0.83237 (18)0.6820 (7)0.36312 (9)0.0206 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.017 (3)0.039 (4)0.037 (4)0.000 (3)0.004 (3)0.002 (3)
C1A0.017 (3)0.039 (4)0.037 (4)0.000 (3)0.004 (3)0.002 (3)
C2A0.0147 (12)0.0294 (16)0.0246 (13)0.0022 (10)0.0041 (10)0.0019 (12)
Br2A0.0147 (12)0.0294 (16)0.0246 (13)0.0022 (10)0.0041 (10)0.0019 (12)
C3A0.005 (10)0.035 (14)0.024 (13)0.008 (10)0.002 (9)0.006 (12)
Br3A0.0104 (11)0.0209 (16)0.0237 (16)0.0040 (9)0.0040 (10)0.0015 (9)
C4A0.0138 (12)0.0212 (11)0.0243 (14)0.0028 (9)0.0055 (9)0.0012 (14)
Br4A0.0138 (12)0.0212 (11)0.0243 (14)0.0028 (9)0.0055 (9)0.0012 (14)
S1B0.023 (3)0.023 (3)0.034 (4)0.004 (3)0.001 (3)0.005 (3)
C1B0.023 (3)0.023 (3)0.034 (4)0.004 (3)0.001 (3)0.005 (3)
C2B0.0142 (11)0.0305 (15)0.0235 (13)0.0007 (10)0.0037 (10)0.0040 (12)
Br2B0.0142 (11)0.0305 (15)0.0235 (13)0.0007 (10)0.0037 (10)0.0040 (12)
C3B0.016 (11)0.015 (11)0.017 (12)0.000 (9)0.000 (9)0.002 (10)
Br3B0.0090 (11)0.0200 (16)0.0290 (17)0.0022 (10)0.0020 (10)0.0028 (10)
C4B0.0125 (11)0.0198 (10)0.0295 (15)0.0030 (10)0.0056 (10)0.0023 (14)
Br4B0.0125 (11)0.0198 (10)0.0295 (15)0.0030 (10)0.0056 (10)0.0023 (14)
Geometric parameters (Å, º) top
S1A—C4A1.68 (2)S1B—C4B1.69 (2)
S1A—C1A1.66 (3)S1B—C1B1.72 (3)
C1A—C2A1.53 (4)C1B—C2B1.48 (4)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.47 (3)C2B—C3B1.41 (3)
C2A—Br2A1.86 (2)C2B—Br2B1.89 (2)
C3A—C4A1.38 (3)C3B—C4B1.39 (3)
C3A—Br3A1.86 (2)C3B—Br3B1.90 (2)
C4A—Br4A1.86 (2)C4B—Br4B1.86 (2)
C4A—S1A—C1A98.9 (13)C4B—S1B—C1B97.7 (12)
C2A—C1A—S1A105.5 (17)C2B—C1B—S1B103.8 (17)
C2A—C1A—H1A127.2C2B—C1B—H1B128.1
S1A—C1A—H1A127.2S1B—C1B—H1B128.1
C3A—C2A—C1A112 (2)C3B—C2B—C1B116 (2)
C3A—C2A—Br2A123.5 (18)C3B—C2B—Br2B122.1 (17)
C1A—C2A—Br2A123.9 (18)C1B—C2B—Br2B122.1 (18)
C4A—C3A—C2A110 (2)C4B—C3B—C2B112 (2)
C4A—C3A—Br3A125.6 (19)C4B—C3B—Br3B122.4 (17)
C2A—C3A—Br3A124.0 (19)C2B—C3B—Br3B125.8 (17)
C3A—C4A—S1A112.5 (18)C3B—C4B—S1B110.9 (17)
C3A—C4A—Br4A125.9 (18)C3B—C4B—Br4B127.9 (18)
S1A—C4A—Br4A121.4 (14)S1B—C4B—Br4B121.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···Br3Ai0.953.043.89 (3)149
C1A—H1A···Br4Ai0.952.963.68 (3)134
C1B—H1B···Br3Bii0.952.933.79 (3)151
C1B—H1B···Br4Bii0.952.973.66 (2)131
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC4HBr3S
Mr320.84
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)91
a, b, c (Å)12.4529 (11), 3.9724 (4), 28.846 (3)
V3)1426.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)17.14
Crystal size (mm)0.17 × 0.06 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.434, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
12082, 2163, 1852
Rint0.092
θmax (°)23.7
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.172, 0.86
No. of reflections2163
No. of parameters109
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1079P)2 + 95.665P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.39, 1.30
Absolute structureFlack (1983), 1050 Friedel pairs
Absolute structure parameter0.11 (6)

Computer programs: , APEX2 (Bruker 2006) and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···Br3Ai0.953.043.89 (3)149
C1A—H1A···Br4Ai0.952.963.68 (3)134
C1B—H1B···Br3Bii0.952.933.79 (3)151
C1B—H1B···Br4Bii0.952.973.66 (2)131
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by grant No UOO-X0404 from the New Economy Research Fund of the New Zealand Foundation for Research Science and Technology. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHelmholdt, R. B., Sonneveld, E. J., Velde, C. M. L. V., Blockhuys, F., Lenstra, A. T. H., Geise, H. J. & Peschar, R. (2007). Acta Cryst. B63, 783–790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurakami, F., Sasaki, S. & Yoshifuji, M. (2002). Angew. Chem. Int. Ed. 41, 2574–2576.  CrossRef CAS Google Scholar
First citationPedireddi, V. R., Shekhar Reddy, D., Satish Goud, B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2359.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y., Ng, S.-C., Wu, B.-M., Xue, F., Mak, T. C. W. & Hor, T. S. A. (1997). J. Organomet. Chem. 531, 175–181.  CSD CrossRef CAS Web of Science Google Scholar
First citationXie, Y., Wu, B.-M., Xue, F., Ng, S.-C., Mak, T. C. W. & Hor, T. S. A. (1998). Organometallics, 17, 3988–3995.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds