organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Biguanidinium dichloride

aChemistry Department, `Sapienza' University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 4 March 2008; accepted 5 March 2008; online 7 March 2008)

The asymmetric unit of the title compound, C2H9N52+·2Cl, is composed of one diprotonated biguanidinium cation and two chloride anions. The diprotonated cation consists of two planar halves twisted by 36.42 (6)°. The ions are associated in the crystal structure by extensive hydrogen bonding into a three-dimensional network; the diprotonated biguanidinium cation is hydrogen bonded to the chloride anions.

Related literature

For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supra­molecular reagents, see: Portalone & Colapietro (2004[Portalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165-o1166.], 2007[Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o181-o184.] and references therein). For related crystal structures, see: Ernst (1977[Ernst, S. R. (1977). Acta Cryst. B33, 237-240.]); Pinkerton & Schwarzenbach (1978[Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989-996.]); Martin & Pinkerton (1996[Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048-1052.]); Martin et al. (1996[Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966-970.], 1997[Martin, A., Pinkerton, A. A., Gilardi, R. D. & Bottaro, J. C. (1997). Acta Cryst. B53, 504-512.]); Kurzer & Pitchfork (1968[Kurzer, F. & Pitchfork, E. D. (1968). Fortschr. Chem. Forsch. 10, 375-472.]).

[Scheme 1]

Experimental

Crystal data
  • C2H9N52+·2Cl

  • Mr = 174.04

  • Monoclinic, P 21 /c

  • a = 6.43693 (9) Å

  • b = 16.93420 (18) Å

  • c = 6.65260 (8) Å

  • β = 98.6878 (12)°

  • V = 716.84 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.852, Tmax = 0.886

  • 80724 measured reflections

  • 2456 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.14

  • 2456 reflections

  • 119 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.819 (18) 2.279 (18) 3.0796 (9) 166.0 (16)
N2—H21⋯Cl1i 0.833 (18) 2.530 (18) 3.2557 (10) 146.4 (15)
N2—H22⋯Cl2ii 0.852 (19) 2.34 (2) 3.1714 (10) 167.1 (17)
N3—H31⋯Cl2i 0.823 (19) 2.787 (19) 3.5098 (12) 147.8 (16)
N3—H32⋯Cl1iii 0.857 (19) 2.599 (19) 3.1933 (10) 127.4 (15)
N3—H32⋯Cl2 0.857 (19) 2.835 (19) 3.5454 (12) 141.3 (15)
N4—H41⋯Cl1 0.88 (2) 2.703 (19) 3.4178 (11) 139.4 (16)
N4—H42⋯Cl1iv 0.846 (19) 2.412 (19) 3.2295 (10) 162.8 (17)
N5—H51⋯Cl2v 0.853 (19) 2.413 (19) 3.2404 (12) 163.7 (16)
N5—H52⋯Cl1 0.874 (19) 2.369 (19) 3.1905 (11) 156.7 (17)
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]; cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]; data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Biguanidine derivatives, characterized by multiple hydrogen-bond donor sites, are good candidates to be coupled in the crystal with carefully selected molecules having multiple hydrogen-bond acceptor sites (Portalone & Colapietro, 2004, 2007). As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, this paper reports the crystal structure of the title compound, (I), BIGH22+2Cl-. The asymmetric unit of (I) (Fig. 1) consists of a diprotonated biguanidinium cation (BIGH22+) and two chloride anions; protonation occurs at the bridge N atom and the imino N atom of the biguanidine molecule. The structure of the delocalized cation is very similar to those previously reported for the carbonate (BIGH2)CO3 and the sulfates (BIGH2)SO4.2H2O and (BIGH2)SO4.H2O (Pinkerton & Schwarzenbach, 1978), the dinitrate (BIGH2)NO3 (Martin et al., 1996), the diperchlorate (BIGH2)2ClO4 (Martin & Pinkerton, 1996), the bis-dinitramide (BIGH2)(DN)2 and (BIGH2)(DN)2.H2O (Martin et al., 1997). BIGH22+ is composed of two planar halves sharing the atom N(1). These two planar parts are twisted with respect to each other by 36.42 (6)°. The C—N terminal bond lengths are shorter due to delocalization of π-electron density through the planar fragments. The lack of complete planarity of the cation is due to steric interaction between the hydrogen atoms. This interaction induces a strain in the molecule which is manifested by the opening of the angle at the bridging N atom [C1—N1—C2, 127.9 (1)°]. The weakening of the bridges bonds is due to the lowered basicity of the bridge N atom on protonation [pkaI = 11.5; pkaII = 2.9 (Kurzer & Pitchfork, 1968)] and is manifested by the longer C—N1 bridging bonds [1.363 (1) - 1.372 (1) Å] and the shorter terminal C—N bonds [1.306 (1) - 1.321 (1) Å], comparing with the corresponding ones reported for BIGH+Cl- (Ernst, 1977). Analysis of the crystal packing of (I) (Fig. 2) shows that the structure is stabilized by ten hydrogen bonds N—H···Cl- involving all protons (Table 1) which account for the relatively high density (Dx = 1.61 Mg m-3).

Related literature top

For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone & Colapietro (2004, 2007 and references therein). For related crystal structures, see: Ernst (1977); Pinkerton & Schwarzenbach (1978); Martin & Pinkerton (1996); Martin et al. (1996, 1997).

For related literature, see: Kurzer & Pitchfork (1968).

Experimental top

Biguanide (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in water (9 ml) and heated under reflux for 2 h. After cooling a solution to an ambient temperature, while stirring, HCl (6 mol L-1) was added dropwise until the pH = 2. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the solvent after a few days.

Refinement top

All H atoms were found in a difference map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines.
Biguanidinium dichloride top
Crystal data top
C2H9N52+·2ClF(000) = 360
Mr = 174.04Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 80724 reflections
a = 6.43693 (9) Åθ = 3.2–32.0°
b = 16.93420 (18) ŵ = 0.83 mm1
c = 6.65260 (8) ÅT = 298 K
β = 98.6878 (12)°Plate, colourless
V = 716.84 (2) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
2456 independent reflections
Radiation source: Enhance (Mo) X-ray source2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0696 pixels mm-1θmax = 32.0°, θmin = 3.2°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2525
Tmin = 0.852, Tmax = 0.886l = 99
80724 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027All H-atom parameters refined
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.2376P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2456 reflectionsΔρmax = 0.14 e Å3
119 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.110 (6)
Crystal data top
C2H9N52+·2ClV = 716.84 (2) Å3
Mr = 174.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.43693 (9) ŵ = 0.83 mm1
b = 16.93420 (18) ÅT = 298 K
c = 6.65260 (8) Å0.20 × 0.20 × 0.15 mm
β = 98.6878 (12)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
2456 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2349 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.886Rint = 0.020
80724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071All H-atom parameters refined
S = 1.14Δρmax = 0.14 e Å3
2456 reflectionsΔρmin = 0.14 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86502 (5)0.053995 (15)0.27026 (4)0.03288 (9)
Cl20.62775 (5)0.315420 (18)0.37349 (5)0.03605 (9)
N10.35152 (13)0.16618 (5)0.32041 (15)0.02556 (17)
H10.430 (3)0.2034 (10)0.356 (3)0.039 (4)*
N20.00539 (15)0.12772 (6)0.20409 (16)0.02955 (19)
H210.025 (3)0.0812 (11)0.243 (3)0.038 (4)*
H220.109 (3)0.1408 (11)0.130 (3)0.048 (5)*
N30.09938 (18)0.25798 (6)0.21118 (17)0.0335 (2)
H310.025 (3)0.2708 (11)0.195 (3)0.046 (5)*
H320.193 (3)0.2941 (11)0.232 (3)0.044 (5)*
N40.38953 (17)0.03968 (6)0.18533 (15)0.0304 (2)
H410.461 (3)0.0045 (12)0.196 (3)0.050 (5)*
H420.308 (3)0.0513 (11)0.078 (3)0.047 (5)*
N50.62338 (15)0.08686 (7)0.45410 (16)0.0324 (2)
H510.646 (3)0.1178 (11)0.556 (3)0.044 (5)*
H520.711 (3)0.0485 (11)0.440 (3)0.051 (5)*
C10.14797 (15)0.18273 (5)0.24248 (14)0.02118 (17)
C20.45468 (15)0.09538 (6)0.31785 (15)0.02354 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04007 (15)0.02213 (13)0.03406 (15)0.00402 (9)0.00208 (10)0.00296 (9)
Cl20.03243 (14)0.03940 (16)0.03375 (15)0.01269 (10)0.00333 (10)0.00083 (10)
N10.0205 (4)0.0213 (4)0.0344 (4)0.0012 (3)0.0024 (3)0.0021 (3)
N20.0220 (4)0.0256 (4)0.0390 (5)0.0017 (3)0.0020 (3)0.0058 (4)
N30.0368 (5)0.0215 (4)0.0420 (6)0.0052 (4)0.0055 (4)0.0047 (4)
N40.0379 (5)0.0269 (4)0.0257 (4)0.0089 (4)0.0022 (4)0.0017 (3)
N50.0253 (4)0.0399 (5)0.0312 (5)0.0067 (4)0.0010 (3)0.0010 (4)
C10.0229 (4)0.0203 (4)0.0208 (4)0.0012 (3)0.0047 (3)0.0022 (3)
C20.0218 (4)0.0261 (4)0.0238 (4)0.0022 (3)0.0068 (3)0.0031 (3)
Geometric parameters (Å, º) top
N1—C11.3634 (13)N3—H320.857 (19)
N1—C21.3719 (13)N4—C21.3156 (14)
N1—H10.819 (18)N4—H410.88 (2)
N2—C11.3056 (13)N4—H420.846 (19)
N2—H210.833 (18)N5—C21.3131 (14)
N2—H220.852 (19)N5—H510.853 (19)
N3—C11.3211 (13)N5—H520.874 (19)
N3—H310.823 (19)
C1—N1—C2127.89 (9)H41—N4—H42121.2 (17)
C1—N1—H1117.6 (12)C2—N5—H51120.4 (12)
C2—N1—H1113.6 (12)C2—N5—H52119.2 (13)
C1—N2—H21122.9 (12)H51—N5—H52120.4 (17)
C1—N2—H22116.6 (13)N2—C1—N3120.97 (10)
H21—N2—H22120.4 (17)N2—C1—N1122.31 (9)
C1—N3—H31118.5 (13)N3—C1—N1116.70 (9)
C1—N3—H32121.3 (12)N5—C2—N4122.04 (10)
H31—N3—H32119.0 (17)N5—C2—N1116.03 (10)
C2—N4—H41116.7 (12)N4—C2—N1121.93 (9)
C2—N4—H42119.7 (12)
C2—N1—C1—N219.96 (17)C1—N1—C2—N5159.12 (10)
C2—N1—C1—N3161.49 (10)C1—N1—C2—N421.55 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.819 (18)2.279 (18)3.0796 (9)166.0 (16)
N2—H21···Cl1i0.833 (18)2.530 (18)3.2557 (10)146.4 (15)
N2—H22···Cl2ii0.852 (19)2.34 (2)3.1714 (10)167.1 (17)
N3—H31···Cl2i0.823 (19)2.787 (19)3.5098 (12)147.8 (16)
N3—H32···Cl1iii0.857 (19)2.599 (19)3.1933 (10)127.4 (15)
N3—H32···Cl20.857 (19)2.835 (19)3.5454 (12)141.3 (15)
N4—H41···Cl10.88 (2)2.703 (19)3.4178 (11)139.4 (16)
N4—H42···Cl1iv0.846 (19)2.412 (19)3.2295 (10)162.8 (17)
N5—H51···Cl2v0.853 (19)2.413 (19)3.2404 (12)163.7 (16)
N5—H52···Cl10.874 (19)2.369 (19)3.1905 (11)156.7 (17)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H9N52+·2Cl
Mr174.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.43693 (9), 16.93420 (18), 6.65260 (8)
β (°) 98.6878 (12)
V3)716.84 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.852, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
80724, 2456, 2349
Rint0.020
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.14
No. of reflections2456
No. of parameters119
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.819 (18)2.279 (18)3.0796 (9)166.0 (16)
N2—H21···Cl1i0.833 (18)2.530 (18)3.2557 (10)146.4 (15)
N2—H22···Cl2ii0.852 (19)2.34 (2)3.1714 (10)167.1 (17)
N3—H31···Cl2i0.823 (19)2.787 (19)3.5098 (12)147.8 (16)
N3—H32···Cl1iii0.857 (19)2.599 (19)3.1933 (10)127.4 (15)
N3—H32···Cl20.857 (19)2.835 (19)3.5454 (12)141.3 (15)
N4—H41···Cl10.88 (2)2.703 (19)3.4178 (11)139.4 (16)
N4—H42···Cl1iv0.846 (19)2.412 (19)3.2295 (10)162.8 (17)
N5—H51···Cl2v0.853 (19)2.413 (19)3.2404 (12)163.7 (16)
N5—H52···Cl10.874 (19)2.369 (19)3.1905 (11)156.7 (17)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErnst, S. R. (1977). Acta Cryst. B33, 237–240.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurzer, F. & Pitchfork, E. D. (1968). Fortschr. Chem. Forsch. 10, 375–472.  CrossRef CAS Google Scholar
First citationMartin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, A., Pinkerton, A. A., Gilardi, R. D. & Bottaro, J. C. (1997). Acta Cryst. B53, 504–512.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989–996.  CSD CrossRef Web of Science Google Scholar
First citationPortalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o181–o184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds