metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m538-m539

cyclo-Tetra-μ-malato-κ16O,O′,O′′:O′′′-tetra­kis[bis­­(1H-benzimidazole-κN3)cobalt(II)] eicosa­hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 9 March 2008; accepted 10 March 2008; online 14 March 2008)

The title compound, [Co4(C4H4O5)4(C7H6N2)8]·20H2O, consists of tetra­nuclear CoII complexes and disordered uncoordinated water mol­ecules. The tetra­meric complex mol­ecule has [\overline{4}] symmetry. While two benzimidazole mol­ecules and a tridentate malate dianion coordinate a CoII ion, the carboxylate O atom from an adjacent malate dianion bridges the CoII ions to complete a distorted octa­hedral coordination geometry. The tridentate malate dianion chelates the CoII ion, and the chelate six- and five-membered rings show half-chair and envelope configurations, respectively. A face-to-face separation of 3.494 (9) Å between parallel benzimidazole ligands indicates the existence of ππ stacking between adjacent complexes. The crystal structure also involves N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO, 8, 2149-2170.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Liu et al. (2004[Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.]); Li et al. (2005[Li, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761-m763.]). For related structures, see: Nie et al. (2002[Nie, J.-J., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Chin. J. Chem. 20, 395-398.]);

[Scheme 1]

Experimental

Crystal data
  • [Co4(C4H4O5)4(C7H6N2)8]·20H2O

  • Mr = 2069.43

  • Tetragonal, P 4/n

  • a = 20.230 (2) Å

  • c = 11.6203 (12) Å

  • V = 4755.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 295 (2) K

  • 0.35 × 0.30 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.748, Tmax = 0.840

  • 29983 measured reflections

  • 4053 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.190

  • S = 1.15

  • 4053 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Co—N13 2.078 (4)
Co—N23 2.075 (4)
Co—O1 2.112 (4)
Co—O3 2.150 (4)
Co—O4 2.169 (3)
Co—O5i 2.101 (4)
Symmetry code: (i) [y-{\script{1\over 2}}, -x+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O3WA 0.86 2.18 3.00 (4) 159
N11—H11⋯O5WAii 0.86 2.10 2.93 (4) 163
N21—H21⋯O1iii 0.86 2.57 3.258 (7) 138
N21—H21⋯O2iii 0.86 2.07 2.901 (8) 163
O3—H3A⋯O4i 0.92 1.78 2.645 (5) 155
Symmetry codes: (i) [y-{\script{1\over 2}}, -x+1, -z+1]; (ii) [y, -x+{\script{3\over 2}}, z]; (iii) [-y+{\script{3\over 2}}, x, z].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years. A series of metal complexes with benzimidazole (bzim) ligand has been prepared and their crystal structures have been determined in our laboratory (Su & Xu, 2004; Liu et al., 2004; Li et al., 2005). As part of our ongoing investigation on the nature of π-π stacking, the title CoII complex incorporating bzim ligand has been prepared and its crystal structure is reported here.

The structure in an asymmetric unit is shown in Fig. 1, and the molecular structure of the tetrameric complex is shown in Fig. 2. The tetranuclear complex has a -4 symmetry. In the asymmetric unit the CoII ion is coordinated by two bzim ligands and a tridentate malate dianion, and the carboxyl O5 atom of malate dianion from the adjacent asymmetric unit bridges to the CoII ion to complete the distorted octahedral coordination (Table 1). The uncoordinated carboxyl O2 atom links with the bzim ligand of the adjacent complex via N—H···O hydrogen bonding (Table 2). The tridentate malate dianion chelates the CoII ion, the chelating six-membered ring and five-membered ring show half-chair and envelope configuration, respectively. Within the malate dianion the C1—C2—C3—C4 torsion angle of 58.9 (6)° is close to 53.0 (3)° found in the crystal structure of a free malic acid (Nie et al., 2002).

Partially overlapped arrangement is observed between parallel bzim ligands of adjacent complexes (Fig. 3), the face-to-face separation of 3.494 (9) Å between N23-phen and N23iv-phen ligands indicates the existence of π-π stacking [symmetry code: (iv) 1 - x,1 - y,1 - z]. Lattice water molecules are disorderly distributed in the roomy space between complexes.

Related literature top

For general background, see: Deisenhofer & Michel (1989); Su & Xu (2004); Liu et al. (2004); Li et al. (2005). For related structures, see: Nie et al. (2002)

Experimental top

An ethanol solution (5 ml) of bzim (0.24 g, 2 mmol) was mixed with an aqueous solution (10 ml) containing cobalt(II) acetate tetrahydrate (0.24 g, 1 mmol), D,L-malic acid (0.13 g, 1 mmol) and sodium carbonate (0.10 g, 1 mmol). The mixture was refluxed for 4 h and filtered after cooling to room temperature. Single crystals of the title compound were obtained after one week from the filtrate.

Refinement top

Lattice water molecules are disordered in the crystal structure. Disordered lattice water O atoms were refined isotropically with the fixed occupancies of 1/2, and H atoms of disordered water molecules were not included in the refinement. Hydroxyl H atom was located in a difference Fourier map and refined as riding in its as-found relative position with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in an asymmetric unit with 30% probability displacement (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. The tetranuclear molecular structure of the title complex [symmetry codes: (i) 1/2 - x,3/2 - y,z; (ii) -1/2 + y,1 - x,1 - z; (iii) 1 - y,1/2 + x,1 - z].
[Figure 3] Fig. 3. A diagram showing π-π stacking [symmetry code: (iv) 1 - x,1 - y,1 - z].
cyclo-Tetra-µ-malato-κ16O,O',O'':O'''-tetrakis[bis(1H-benzimidazole- kN3)cobalt(II)] pentahydrate top
Crystal data top
[Co4(C4H4O5)4(C7H6N2)8]·20H2ODx = 1.445 Mg m3
Mr = 2069.43Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P4/nCell parameters from 8672 reflections
Hall symbol: -P 4aθ = 2.0–24.0°
a = 20.230 (2) ŵ = 0.78 mm1
c = 11.6203 (12) ÅT = 295 K
V = 4755.6 (8) Å3Prism, pink
Z = 20.35 × 0.30 × 0.22 mm
F(000) = 2152
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4053 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 2224
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2321
Tmin = 0.748, Tmax = 0.840l = 1212
29983 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0761P)2 + 7.4753P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
4053 reflectionsΔρmax = 0.43 e Å3
294 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Crystal data top
[Co4(C4H4O5)4(C7H6N2)8]·20H2OZ = 2
Mr = 2069.43Mo Kα radiation
Tetragonal, P4/nµ = 0.78 mm1
a = 20.230 (2) ÅT = 295 K
c = 11.6203 (12) Å0.35 × 0.30 × 0.22 mm
V = 4755.6 (8) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3191 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.840Rint = 0.075
29983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.15Δρmax = 0.43 e Å3
4053 reflectionsΔρmin = 0.31 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.43554 (3)0.71743 (3)0.55558 (6)0.0519 (3)
N110.5316 (3)0.8011 (3)0.8403 (6)0.106 (2)
H110.56800.81340.87210.128*
N130.4649 (2)0.7567 (2)0.7126 (4)0.0602 (11)
N210.5804 (3)0.5747 (3)0.4877 (6)0.0909 (18)
H210.61140.56100.44290.109*
N230.5019 (2)0.6392 (2)0.5566 (4)0.0667 (12)
O10.50329 (18)0.7760 (2)0.4621 (4)0.0691 (11)
O20.5563 (2)0.8172 (3)0.3159 (4)0.1038 (16)
O30.39943 (17)0.69288 (15)0.3869 (3)0.0571 (9)
H3A0.36020.67030.39760.068*
O40.36459 (17)0.79509 (16)0.5193 (3)0.0556 (9)
O50.33611 (16)0.85780 (16)0.3690 (3)0.0562 (9)
C10.5066 (3)0.7899 (3)0.3585 (6)0.0628 (14)
C20.4512 (3)0.7765 (3)0.2754 (5)0.0712 (16)
H2A0.46520.74220.22250.085*
H2B0.44340.81620.23060.085*
C30.3868 (2)0.7556 (2)0.3297 (5)0.0570 (13)
H30.35410.74860.26880.068*
C40.3602 (2)0.8070 (2)0.4135 (5)0.0506 (12)
C120.5260 (3)0.7690 (4)0.7395 (7)0.093 (2)
H120.56190.75690.69410.111*
C140.3604 (3)0.7854 (3)0.8185 (5)0.0652 (15)
H140.33130.76610.76630.078*
C150.3380 (4)0.8176 (4)0.9149 (6)0.088 (2)
H150.29270.82050.92720.106*
C160.3800 (6)0.8455 (4)0.9937 (7)0.104 (2)
H160.36240.86631.05810.125*
C170.4469 (6)0.8436 (4)0.9804 (6)0.110 (3)
H170.47560.86291.03310.132*
C180.4696 (4)0.8110 (3)0.8834 (6)0.0838 (18)
C190.4273 (3)0.7829 (2)0.8026 (5)0.0584 (13)
C220.5461 (3)0.6295 (3)0.4751 (7)0.086 (2)
H220.55260.65870.41440.103*
C240.4745 (3)0.5679 (3)0.7273 (6)0.086 (2)
H240.44170.59510.75720.104*
C250.4908 (4)0.5093 (4)0.7806 (7)0.109 (3)
H250.46950.49670.84800.131*
C260.5408 (4)0.4680 (4)0.7312 (9)0.108 (3)
H260.55060.42800.76690.130*
C270.5738 (3)0.4843 (4)0.6366 (8)0.097 (2)
H270.60640.45680.60650.116*
C280.5580 (3)0.5432 (3)0.5846 (6)0.0707 (17)
C290.5082 (2)0.5850 (3)0.6283 (6)0.0637 (15)
O1WA0.6498 (6)0.7660 (6)0.5347 (11)0.111 (4)*0.50
O1WB0.6657 (13)0.7678 (12)0.450 (2)0.232 (10)*0.50
O2WA0.612 (2)0.656 (2)0.164 (4)0.382 (18)*0.50
O2WB0.724 (5)0.683 (3)0.306 (5)0.55 (4)*0.50
O3WA0.6433 (16)0.8792 (19)0.941 (3)0.294 (13)*0.50
O3WB0.656 (2)0.954 (2)1.036 (3)0.358 (17)*0.50
O4WA0.6559 (16)0.7823 (16)1.177 (3)0.306 (14)*0.50
O4WB0.6030 (17)0.8444 (17)1.094 (3)0.305 (13)*0.50
O5WA0.6861 (19)0.6634 (15)0.943 (2)0.294 (13)*0.50
O5WB0.688 (3)0.692 (3)0.719 (4)0.49 (3)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0465 (4)0.0514 (4)0.0579 (5)0.0028 (3)0.0040 (3)0.0070 (3)
N110.092 (5)0.139 (6)0.088 (5)0.022 (4)0.033 (4)0.028 (4)
N130.053 (3)0.066 (3)0.061 (3)0.003 (2)0.011 (2)0.006 (2)
N210.065 (3)0.085 (4)0.122 (5)0.016 (3)0.020 (3)0.020 (4)
N230.050 (3)0.068 (3)0.082 (3)0.013 (2)0.002 (2)0.009 (3)
O10.059 (2)0.080 (3)0.068 (3)0.0198 (18)0.0013 (19)0.005 (2)
O20.085 (3)0.119 (4)0.108 (4)0.038 (3)0.019 (3)0.004 (3)
O30.061 (2)0.0489 (19)0.061 (2)0.0063 (15)0.0033 (17)0.0063 (16)
O40.060 (2)0.0530 (19)0.054 (2)0.0098 (15)0.0076 (17)0.0001 (16)
O50.055 (2)0.057 (2)0.056 (2)0.0009 (15)0.0015 (17)0.0061 (17)
C10.053 (3)0.063 (3)0.072 (4)0.003 (2)0.006 (3)0.017 (3)
C20.077 (4)0.074 (4)0.062 (4)0.008 (3)0.010 (3)0.010 (3)
C30.056 (3)0.060 (3)0.055 (3)0.006 (2)0.009 (2)0.009 (3)
C40.037 (2)0.052 (3)0.063 (4)0.005 (2)0.007 (2)0.003 (2)
C120.064 (4)0.122 (6)0.093 (6)0.000 (4)0.014 (4)0.022 (5)
C140.073 (4)0.071 (4)0.052 (4)0.014 (3)0.004 (3)0.003 (3)
C150.104 (5)0.099 (5)0.062 (5)0.024 (4)0.007 (4)0.011 (4)
C160.154 (8)0.108 (6)0.050 (4)0.008 (5)0.006 (5)0.008 (4)
C170.158 (8)0.116 (6)0.056 (5)0.033 (6)0.008 (5)0.023 (4)
C180.091 (5)0.090 (5)0.071 (5)0.014 (4)0.011 (4)0.006 (4)
C190.076 (4)0.052 (3)0.047 (3)0.002 (2)0.012 (3)0.004 (2)
C220.073 (4)0.079 (4)0.105 (6)0.011 (3)0.022 (4)0.011 (4)
C240.075 (4)0.095 (5)0.089 (5)0.030 (3)0.007 (4)0.008 (4)
C250.102 (6)0.114 (6)0.111 (6)0.034 (5)0.001 (5)0.030 (5)
C260.093 (6)0.092 (5)0.140 (8)0.028 (4)0.024 (5)0.027 (5)
C270.064 (4)0.081 (5)0.144 (8)0.020 (3)0.020 (5)0.019 (5)
C280.056 (3)0.059 (3)0.098 (5)0.016 (3)0.016 (3)0.017 (3)
C290.046 (3)0.073 (4)0.072 (4)0.011 (2)0.012 (3)0.013 (3)
Geometric parameters (Å, º) top
Co—N132.078 (4)C2—H2B0.9700
Co—N232.075 (4)C3—C41.523 (7)
Co—O12.112 (4)C3—H30.9800
Co—O32.150 (4)C12—H120.9300
Co—O42.169 (3)C14—C191.367 (8)
Co—O5i2.101 (4)C14—C151.373 (8)
N11—C121.344 (9)C14—H140.9300
N11—C181.366 (9)C15—C161.371 (11)
N11—H110.8600C15—H150.9300
N13—C121.298 (7)C16—C171.363 (12)
N13—C191.396 (7)C16—H160.9300
N21—C221.316 (8)C17—C181.382 (11)
N21—C281.370 (9)C17—H170.9300
N21—H210.8600C18—C191.392 (8)
N23—C221.318 (8)C22—H220.9300
N23—C291.382 (7)C24—C251.377 (9)
O1—C11.239 (7)C24—C291.382 (9)
O2—C11.250 (7)C24—H240.9300
O3—C31.454 (6)C25—C261.432 (11)
O3—H3A0.9247C25—H250.9300
O4—C41.256 (6)C26—C271.328 (11)
O5—C41.250 (6)C26—H260.9300
C1—C21.504 (8)C27—C281.375 (10)
C2—C31.507 (7)C27—H270.9300
C2—H2A0.9700C28—C291.409 (7)
N23—Co—N1395.85 (18)C4—C3—H3108.8
N23—Co—O5i95.05 (16)O5—C4—O4126.1 (5)
N13—Co—O5i92.60 (16)O5—C4—C3115.8 (5)
N23—Co—O190.65 (18)O4—C4—C3118.1 (4)
N13—Co—O192.93 (17)N13—C12—N11112.5 (6)
O5i—Co—O1171.61 (15)N13—C12—H12123.8
N23—Co—O392.79 (16)N11—C12—H12123.8
N13—Co—O3170.57 (15)C19—C14—C15117.0 (6)
O5i—Co—O390.39 (13)C19—C14—H14121.5
O1—Co—O383.18 (14)C15—C14—H14121.5
N23—Co—O4168.94 (18)C16—C15—C14122.4 (7)
N13—Co—O494.74 (15)C16—C15—H15118.8
O5i—Co—O487.65 (13)C14—C15—H15118.8
O1—Co—O485.61 (15)C17—C16—C15121.9 (8)
O3—Co—O476.44 (13)C17—C16—H16119.0
C12—N11—C18108.2 (6)C15—C16—H16119.0
C12—N11—H11125.9C16—C17—C18115.8 (7)
C18—N11—H11125.9C16—C17—H17122.1
C12—N13—C19105.4 (5)C18—C17—H17122.1
C12—N13—Co123.8 (5)N11—C18—C17132.3 (7)
C19—N13—Co130.3 (3)N11—C18—C19104.8 (6)
C22—N21—C28107.9 (5)C17—C18—C19122.8 (7)
C22—N21—H21126.1C14—C19—C18120.1 (6)
C28—N21—H21126.1C14—C19—N13130.9 (5)
C22—N23—C29104.6 (5)C18—C19—N13109.0 (5)
C22—N23—Co123.3 (5)N21—C22—N23113.8 (7)
C29—N23—Co132.0 (4)N21—C22—H22123.1
C1—O1—Co131.5 (3)N23—C22—H22123.1
C3—O3—Co105.9 (3)C25—C24—C29118.1 (6)
C3—O3—H3A110.0C25—C24—H24120.9
Co—O3—H3A106.4C29—C24—H24120.9
C4—O4—Co112.0 (3)C24—C25—C26119.5 (8)
C4—O5—Coii130.1 (3)C24—C25—H25120.3
O1—C1—O2121.9 (6)C26—C25—H25120.3
O1—C1—C2122.9 (5)C27—C26—C25122.8 (7)
O2—C1—C2115.2 (6)C27—C26—H26118.6
C1—C2—C3115.2 (5)C25—C26—H26118.6
C1—C2—H2A108.5C26—C27—C28117.6 (7)
C3—C2—H2A108.5C26—C27—H27121.2
C1—C2—H2B108.5C28—C27—H27121.2
C3—C2—H2B108.5N21—C28—C27133.4 (6)
H2A—C2—H2B107.5N21—C28—C29104.8 (5)
O3—C3—C2106.6 (4)C27—C28—C29121.9 (7)
O3—C3—C4111.5 (4)C24—C29—N23130.9 (5)
C2—C3—C4112.4 (4)C24—C29—C28120.2 (6)
O3—C3—H3108.8N23—C29—C28108.9 (6)
C2—C3—H3108.8
N23—Co—N13—C1250.3 (6)C2—C3—C4—O573.8 (6)
O5i—Co—N13—C12145.7 (5)O3—C3—C4—O413.6 (6)
O1—Co—N13—C1240.6 (5)C2—C3—C4—O4105.9 (5)
O4—Co—N13—C12126.5 (5)C19—N13—C12—N110.1 (8)
N23—Co—N13—C19138.7 (5)Co—N13—C12—N11172.9 (5)
O5i—Co—N13—C1943.4 (5)C18—N11—C12—N130.1 (9)
O1—Co—N13—C19130.3 (5)C19—C14—C15—C160.9 (10)
O4—Co—N13—C1944.5 (5)C14—C15—C16—C170.7 (12)
N13—Co—N23—C22121.7 (5)C15—C16—C17—C180.8 (13)
O5i—Co—N23—C22145.1 (5)C12—N11—C18—C17176.7 (8)
O1—Co—N23—C2228.7 (5)C12—N11—C18—C190.1 (8)
O3—Co—N23—C2254.5 (5)C16—C17—C18—N11177.6 (8)
O4—Co—N23—C2241.4 (11)C16—C17—C18—C191.2 (12)
N13—Co—N23—C2964.3 (5)C15—C14—C19—C181.3 (8)
O5i—Co—N23—C2928.9 (5)C15—C14—C19—N13177.0 (6)
O1—Co—N23—C29157.3 (5)N11—C18—C19—C14178.7 (5)
O3—Co—N23—C29119.5 (5)C17—C18—C19—C141.5 (10)
O4—Co—N23—C29132.6 (8)N11—C18—C19—N130.0 (7)
N23—Co—O1—C1100.5 (5)C17—C18—C19—N13177.2 (7)
N13—Co—O1—C1163.6 (5)C12—N13—C19—C14178.5 (6)
O3—Co—O1—C17.7 (5)Co—N13—C19—C146.3 (9)
O4—Co—O1—C169.1 (5)C12—N13—C19—C180.0 (7)
N23—Co—O3—C3143.1 (3)Co—N13—C19—C18172.2 (4)
O5i—Co—O3—C3121.8 (3)C28—N21—C22—N230.6 (8)
O1—Co—O3—C352.8 (3)C29—N23—C22—N210.2 (8)
O4—Co—O3—C334.3 (3)Co—N23—C22—N21175.6 (4)
N23—Co—O4—C416.0 (10)C29—C24—C25—C261.1 (11)
N13—Co—O4—C4147.1 (3)C24—C25—C26—C271.6 (13)
O5i—Co—O4—C4120.5 (3)C25—C26—C27—C280.7 (12)
O1—Co—O4—C454.5 (3)C22—N21—C28—C27177.6 (7)
O3—Co—O4—C429.5 (3)C22—N21—C28—C290.8 (7)
Co—O1—C1—O2168.7 (4)C26—C27—C28—N21178.9 (7)
Co—O1—C1—C212.5 (8)C26—C27—C28—C290.7 (10)
O1—C1—C2—C39.8 (8)C25—C24—C29—N23178.7 (6)
O2—C1—C2—C3169.0 (5)C25—C24—C29—C280.2 (10)
Co—O3—C3—C286.6 (4)C22—N23—C29—C24179.3 (7)
Co—O3—C3—C436.3 (4)Co—N23—C29—C244.5 (9)
C1—C2—C3—O363.4 (6)C22—N23—C29—C280.3 (6)
C1—C2—C3—C458.9 (6)Co—N23—C29—C28174.5 (4)
Coii—O5—C4—O49.6 (7)N21—C28—C29—C24179.8 (6)
Coii—O5—C4—C3170.8 (3)C27—C28—C29—C241.2 (9)
Co—O4—C4—O5162.3 (4)N21—C28—C29—N230.7 (6)
Co—O4—C4—C317.4 (5)C27—C28—C29—N23178.0 (6)
O3—C3—C4—O5166.7 (4)
Symmetry codes: (i) y1/2, x+1, z+1; (ii) y+1, x+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3WA0.862.183.00 (4)159
N11—H11···O5WAiii0.862.102.93 (4)163
N21—H21···O1iv0.862.573.258 (7)138
N21—H21···O2iv0.862.072.901 (8)163
O3—H3A···O4i0.921.782.645 (5)155
Symmetry codes: (i) y1/2, x+1, z+1; (iii) y, x+3/2, z; (iv) y+3/2, x, z.

Experimental details

Crystal data
Chemical formula[Co4(C4H4O5)4(C7H6N2)8]·20H2O
Mr2069.43
Crystal system, space groupTetragonal, P4/n
Temperature (K)295
a, c (Å)20.230 (2), 11.6203 (12)
V3)4755.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.35 × 0.30 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.748, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
29983, 4053, 3191
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.190, 1.15
No. of reflections4053
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—N132.078 (4)Co—O32.150 (4)
Co—N232.075 (4)Co—O42.169 (3)
Co—O12.112 (4)Co—O5i2.101 (4)
Symmetry code: (i) y1/2, x+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3WA0.862.183.00 (4)159
N11—H11···O5WAii0.862.102.93 (4)163
N21—H21···O1iii0.862.573.258 (7)138
N21—H21···O2iii0.862.072.901 (8)163
O3—H3A···O4i0.921.782.645 (5)155
Symmetry codes: (i) y1/2, x+1, z+1; (ii) y, x+3/2, z; (iii) y+3/2, x, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO, 8, 2149–2170.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761–m763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNie, J.-J., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Chin. J. Chem. 20, 395–398.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m538-m539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds