metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m601-m602

[(E)-2-(3,5-Di­bromo-2-oxido­benzyl­­idene­amino)-3-(4-hy­droxy­phen­yl)propionato-κ3O,N,O′](di­methyl­formamide-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, HuNan 410083, People's Republic of China, bDepartment of Chemistry and Biology, Yu Lin Normal College, Yulin, Guangxi 537000, People's Republic of China, and cKey Laboratory of Medicinal Chemical Resources and Molecular Engineering, Ministry of Education, College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: tanmx00@163.com

(Received 28 February 2008; accepted 24 March 2008; online 29 March 2008)

In the title complex, [Cu(C16H11Br2NO4)(C3H7NO)]2, there are two unique mol­ecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− [LH2 = (E)-2-(3,5-dibromo-2-hydroxy­benzyl­idene­amino)-2-(4-hydroxy­phenyl)acetic acid] and the O atom of a dimethyl­formamide mol­ecule to give a slightly distorted square-planar geometry. The two unique mol­ecules form a dimer through weak C—H⋯O hydrogen bonds. In the dimer, the Cu⋯Cu distance is 3.712 (1) Å. In the crystal structure, mol­ecules form a one-dimensional chain through C—H⋯O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li et al. 2008[Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.]; Zhang et al. (2007a[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156-m1157.],b[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535-m536.]). For preparative procedures, see: Xia et al. (2007[Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353-m355.]); Liu et al. (2007[Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156-m158.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H11Br2NO4)(C3H7NO)]

  • Mr = 577.71

  • Triclinic, [P \overline 1]

  • a = 11.4316 (19) Å

  • b = 11.840 (2) Å

  • c = 15.984 (2) Å

  • α = 88.998 (3)°

  • β = 83.562 (2)°

  • γ = 73.210 (2)°

  • V = 2057.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.98 mm−1

  • T = 298 (2) K

  • 0.33 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.267, Tmax = 0.498

  • 10763 measured reflections

  • 7143 independent reflections

  • 3697 reflections with > 2s(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.093

  • S = 1.00

  • 7143 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O4 1.874 (4)
Cu1—N1 1.893 (5)
Cu1—O5 1.917 (5)
Cu1—O1 1.932 (4)
Cu2—O9 1.874 (4)
Cu2—N3 1.907 (5)
Cu2—O6 1.922 (4)
Cu2—O10 1.932 (5)
O4—Cu1—N1 94.3 (2)
O4—Cu1—O5 92.5 (2)
N1—Cu1—O5 173.1 (2)
O4—Cu1—O1 177.0 (2)
N1—Cu1—O1 84.6 (2)
O5—Cu1—O1 88.5 (2)
O9—Cu2—N3 95.0 (2)
O9—Cu2—O6 178.9 (2)
N3—Cu2—O6 85.1 (2)
O9—Cu2—O10 90.9 (2)
N3—Cu2—O10 173.7 (2)
O6—Cu2—O10 89.0 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O7 0.96 2.59 3.364 (9) 137
C37—H37C⋯O2 0.96 2.48 3.307 (8) 144
O3—H3⋯O1i 0.82 1.98 2.772 (6) 163
O8—H8⋯O6ii 0.82 2.07 2.888 (6) 176
C16—H16⋯O7iii 0.93 2.52 3.422 (9) 163
C29—H29⋯O2iv 0.93 2.45 3.291 (8) 150
C35—H35⋯O2iv 0.93 2.59 3.408 (8) 147
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herein, we report the structure of a new mononuclear copper coordination complex [Cu(L)(C3H7NO)]2 (1), Fig. 1, of the chiral ligand (E)-2-(3,5-dibromo-2-oxidobenzylideneamino)-2-(4-hydroxyphenyl)acetate LH2. The Cu(II) atom coordinates a dimethylformamide molecule and the tridentate anionic ligand L2- which binds through the N atom and carboxylate and phenolate O atoms. Although the LH2 ligand is chiral, the compound crystallizes as a racemate with two molecules in the asymmetric unit. The coordination geometry about each copper atom is slightly distorted square planar, Table 1. A s expected all other bond distances and angles are within normal ranges (Zhang et al., 2007a,b).

The two unique molecules form a dimer through weak C18—H18C···O7 and C37—H37C···O2 hydrogen bonds, Table 2. In the dimer, the Cu1···Cu2 distance is 3.712 (1) Å. In the crystal structure, molecules of (I) form a one-dimensional chain along c (Fig. 2) through C3–H3B···O8 and C22–H22B···O3 hydrogen bonds. These chains then form a three-dimensional network through O3—H3···O1 and O8—H8···O6 hydrogen bonds and C29–H29···O2 and C35—H35···O2 interactions (Table 2, Figure 3).

Related literature top

For related structures, see: Li et al. 2008; Zhang et al. (2007a,b). For preparative procedures, see: Xia et al. (2007); Liu et al. (2007).

Experimental top

Complex (I) was prepared following the procedure described by Liu et al. (2007) and Xia et al. (2007) as follows. 3,5-Dibromo-2-hydroxy-benzaldehyde(0.560 g, 2.0 mmol) and 4-hydroxyl-phenylalanine (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to give a yellow solution. 2 ml DMF and 10 ml of a methanolic solution of CuSO4.5H2O (0.5 g, 2 mmol) were added, the mixture was refluxed for another 1 h at 363 K, and the resulting blue solution was filtered. Blue single crystals suitable for X–ray analysis were obtained by slow evaporation of the filtrate at room temperature. Yield: 80.1% (based on copper). Elemental analysis for [Cu(C16H11Br2NO4)(C3H7NO)]2 calculated: C 46.69, H 3.71, N 5.73%; found: C 46.65, H 3.81, N 5.71%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq (O) for the OH groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with 30% probability displacement ellipsoids for non-H atoms. Hydrogen atoms have been omitted and C—H···O hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The formation of one-dimensional chains along c. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Crystal packing of (I) showing the three-dimensional network, with hydrogen bonds drawn as dashed lines.
[(E)-2-(3,5-Dichloro-2-oxidobenzylideneamino)-3-(4- hydroxyphenyl)propionato-κ3O,N,O'](dimethylformamide- κO)copper(II) top
Crystal data top
[Cu(C16H11Br2NO4)(C3H7NO)]Z = 4
Mr = 577.71F(000) = 1140
Triclinic, P1Dx = 1.865 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4316 (19) ÅCell parameters from 1919 reflections
b = 11.840 (2) Åθ = 2.2–21.6°
c = 15.984 (2) ŵ = 4.98 mm1
α = 88.998 (3)°T = 298 K
β = 83.562 (2)°Prism, blue
γ = 73.210 (2)°0.33 × 0.18 × 0.14 mm
V = 2057.9 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7143 independent reflections
Radiation source: fine-focus sealed tube3697 reflections with > 2s(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 1313
Tmin = 0.267, Tmax = 0.498k = 1410
10763 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.024P)2]
where P = (Fo2 + 2Fc2)/3
7143 reflections(Δ/σ)max < 0.001
523 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C16H11Br2NO4)(C3H7NO)]γ = 73.210 (2)°
Mr = 577.71V = 2057.9 (6) Å3
Triclinic, P1Z = 4
a = 11.4316 (19) ÅMo Kα radiation
b = 11.840 (2) ŵ = 4.98 mm1
c = 15.984 (2) ÅT = 298 K
α = 88.998 (3)°0.33 × 0.18 × 0.14 mm
β = 83.562 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7143 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
3697 reflections with > 2s(I)
Tmin = 0.267, Tmax = 0.498Rint = 0.041
10763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.60 e Å3
7143 reflectionsΔρmin = 0.55 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45708 (7)0.70847 (7)0.17285 (5)0.0437 (2)
Cu20.33188 (7)0.52131 (7)0.32557 (5)0.0433 (2)
Br10.47185 (6)0.32932 (7)0.06179 (5)0.0569 (2)
Br20.95715 (7)0.15518 (7)0.14381 (6)0.0859 (3)
Br30.70303 (6)0.51591 (6)0.44153 (5)0.0583 (2)
Br40.88589 (7)0.02902 (7)0.36347 (6)0.0810 (3)
N10.6098 (5)0.6878 (5)0.2154 (3)0.0386 (14)
N20.1415 (5)0.6973 (6)0.0891 (4)0.0586 (17)
N30.3513 (4)0.3622 (4)0.2930 (3)0.0312 (13)
N40.3335 (5)0.8409 (5)0.4121 (3)0.0494 (15)
O10.4266 (4)0.8725 (4)0.2033 (3)0.0507 (12)
O20.4951 (4)0.9914 (4)0.2783 (3)0.0625 (14)
O30.7098 (4)0.9130 (4)0.1456 (3)0.0760 (16)
H30.67520.98220.15490.114*
O40.4861 (4)0.5476 (4)0.1493 (3)0.0492 (12)
O50.2972 (4)0.7485 (4)0.1347 (3)0.0592 (14)
O60.1695 (4)0.5527 (4)0.2919 (3)0.0509 (13)
O70.0475 (4)0.4692 (4)0.2348 (3)0.0709 (16)
O80.0751 (4)0.2943 (4)0.6592 (3)0.0816 (17)
H80.00630.34000.67110.122*
O90.4890 (4)0.4905 (4)0.3606 (3)0.0431 (12)
O100.2976 (4)0.6874 (4)0.3510 (3)0.0645 (15)
C10.5074 (7)0.8940 (6)0.2447 (4)0.0443 (18)
C20.6249 (6)0.7964 (6)0.2492 (4)0.0452 (18)
H20.63910.78420.30840.054*
C30.7327 (6)0.8309 (6)0.2023 (4)0.0483 (18)
H3A0.73990.90130.22890.058*
H3B0.80770.76820.20790.058*
C40.7220 (5)0.8543 (6)0.1097 (4)0.0390 (17)
C50.6648 (6)0.9636 (6)0.0814 (4)0.0467 (18)
H50.62901.02450.12040.056*
C60.6584 (6)0.9870 (6)0.0033 (4)0.0492 (19)
H60.62021.06270.02080.059*
C70.7089 (6)0.8970 (6)0.0613 (5)0.0450 (18)
C80.7654 (5)0.7877 (6)0.0346 (4)0.0458 (18)
H8A0.80030.72710.07400.055*
C90.7724 (5)0.7642 (6)0.0503 (4)0.0394 (17)
H90.81070.68830.06740.047*
C100.6954 (6)0.5907 (7)0.2170 (4)0.0427 (19)
H100.76360.59210.24320.051*
C110.6958 (6)0.4798 (6)0.1821 (4)0.0339 (16)
C120.5917 (6)0.4666 (6)0.1476 (4)0.0384 (17)
C130.6066 (6)0.3563 (7)0.1109 (4)0.0434 (18)
C140.7127 (6)0.2650 (6)0.1096 (4)0.0464 (18)
H140.71840.19300.08450.056*
C150.8119 (6)0.2807 (6)0.1461 (4)0.0473 (19)
C160.8028 (6)0.3859 (6)0.1807 (4)0.0451 (19)
H160.86970.39640.20430.054*
C170.2547 (7)0.6760 (7)0.1048 (5)0.058 (2)
H170.30720.60070.09260.070*
C180.0959 (7)0.6084 (7)0.0547 (5)0.083 (3)
H18A0.16340.53970.03880.125*
H18B0.05540.63870.00610.125*
H18C0.03870.58770.09640.125*
C190.0575 (7)0.8125 (8)0.1092 (6)0.117 (4)
H19A0.02130.81420.16660.175*
H19B0.00610.82910.07240.175*
H19C0.10110.87070.10210.175*
C200.1454 (6)0.4640 (7)0.2619 (4)0.0453 (19)
C210.2437 (5)0.3457 (5)0.2600 (4)0.0390 (17)
H210.26750.32020.20100.047*
C220.1966 (5)0.2501 (5)0.3067 (4)0.0427 (17)
H22A0.12380.24520.28290.051*
H22B0.25880.17480.29640.051*
C230.1652 (6)0.2694 (5)0.4012 (4)0.0349 (16)
C240.2473 (6)0.2088 (5)0.4556 (5)0.0445 (18)
H240.32460.16130.43420.053*
C250.2147 (6)0.2189 (6)0.5402 (5)0.0504 (19)
H250.27070.17750.57590.060*
C260.1029 (7)0.2877 (6)0.5744 (5)0.0484 (19)
C270.0216 (6)0.3516 (6)0.5208 (4)0.0488 (19)
H270.05380.40220.54250.059*
C280.0536 (6)0.3397 (6)0.4346 (4)0.0422 (18)
H280.00230.38050.39870.051*
C290.4494 (6)0.2781 (6)0.2933 (4)0.0387 (17)
H290.45080.20630.26980.046*
C300.5595 (6)0.2846 (6)0.3275 (4)0.0354 (16)
C310.5709 (6)0.3894 (6)0.3605 (4)0.0353 (16)
C320.6824 (6)0.3771 (6)0.3959 (4)0.0431 (18)
C330.7748 (6)0.2735 (7)0.3965 (4)0.050 (2)
H330.84610.27060.42050.060*
C340.7605 (6)0.1727 (6)0.3609 (4)0.0479 (19)
C350.6547 (6)0.1792 (6)0.3273 (4)0.0418 (18)
H350.64530.11160.30360.050*
C360.3602 (6)0.7288 (6)0.3940 (4)0.0496 (19)
H360.42900.67750.41410.059*
C370.4104 (6)0.8861 (6)0.4608 (4)0.063 (2)
H37A0.47210.82130.48120.095*
H37B0.36070.93220.50770.095*
H37C0.44940.93460.42590.095*
C380.2263 (6)0.9238 (6)0.3835 (5)0.075 (2)
H38A0.17380.88160.36440.112*
H38B0.25140.96870.33800.112*
H38C0.18230.97610.42910.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0467 (5)0.0381 (5)0.0484 (6)0.0140 (4)0.0101 (4)0.0016 (4)
Cu20.0440 (5)0.0341 (5)0.0536 (6)0.0120 (4)0.0116 (4)0.0022 (4)
Br10.0556 (5)0.0620 (6)0.0605 (6)0.0290 (4)0.0039 (4)0.0116 (4)
Br20.0567 (5)0.0566 (6)0.1299 (9)0.0036 (5)0.0036 (5)0.0072 (5)
Br30.0577 (5)0.0530 (5)0.0742 (6)0.0261 (4)0.0222 (4)0.0004 (4)
Br40.0546 (5)0.0557 (6)0.1204 (8)0.0037 (5)0.0123 (5)0.0119 (5)
N10.048 (4)0.032 (4)0.039 (4)0.015 (3)0.009 (3)0.008 (3)
N20.037 (4)0.065 (5)0.074 (5)0.012 (4)0.016 (3)0.002 (4)
N30.032 (3)0.026 (3)0.039 (4)0.012 (3)0.006 (3)0.002 (2)
N40.056 (4)0.044 (4)0.048 (4)0.016 (4)0.002 (3)0.003 (3)
O10.055 (3)0.042 (3)0.058 (3)0.017 (3)0.009 (3)0.003 (2)
O20.084 (4)0.044 (3)0.065 (4)0.027 (3)0.008 (3)0.013 (3)
O30.108 (4)0.059 (4)0.041 (4)0.007 (3)0.005 (3)0.003 (3)
O40.046 (3)0.035 (3)0.066 (3)0.007 (3)0.017 (2)0.004 (2)
O50.050 (3)0.055 (4)0.073 (4)0.013 (3)0.014 (3)0.005 (3)
O60.046 (3)0.042 (3)0.066 (4)0.011 (3)0.015 (2)0.004 (2)
O70.049 (3)0.086 (4)0.087 (4)0.027 (3)0.026 (3)0.019 (3)
O80.098 (4)0.078 (4)0.041 (4)0.017 (3)0.007 (3)0.001 (3)
O90.048 (3)0.031 (3)0.051 (3)0.010 (2)0.008 (2)0.001 (2)
O100.064 (3)0.035 (3)0.095 (4)0.005 (3)0.033 (3)0.002 (3)
C10.061 (5)0.038 (5)0.037 (5)0.021 (5)0.003 (4)0.010 (4)
C20.064 (5)0.049 (5)0.035 (5)0.034 (4)0.014 (4)0.004 (3)
C30.059 (5)0.051 (5)0.045 (5)0.028 (4)0.018 (4)0.000 (3)
C40.039 (4)0.041 (5)0.046 (5)0.024 (4)0.007 (4)0.003 (4)
C50.072 (5)0.032 (5)0.037 (5)0.018 (4)0.005 (4)0.006 (3)
C60.070 (5)0.025 (4)0.048 (5)0.008 (4)0.003 (4)0.001 (4)
C70.046 (4)0.044 (5)0.041 (5)0.007 (4)0.002 (4)0.006 (4)
C80.045 (4)0.044 (5)0.044 (5)0.005 (4)0.006 (4)0.013 (4)
C90.038 (4)0.033 (4)0.053 (5)0.015 (4)0.014 (4)0.002 (4)
C100.051 (5)0.065 (6)0.027 (4)0.036 (5)0.014 (4)0.015 (4)
C110.037 (4)0.032 (4)0.038 (4)0.015 (4)0.013 (3)0.009 (3)
C120.054 (5)0.024 (4)0.042 (5)0.018 (4)0.005 (4)0.007 (3)
C130.037 (4)0.058 (5)0.043 (5)0.025 (4)0.006 (3)0.008 (4)
C140.054 (5)0.030 (5)0.055 (5)0.016 (4)0.006 (4)0.003 (3)
C150.045 (5)0.036 (5)0.061 (5)0.015 (4)0.003 (4)0.012 (4)
C160.049 (5)0.038 (5)0.054 (5)0.022 (4)0.006 (4)0.013 (4)
C170.044 (5)0.067 (6)0.058 (6)0.005 (5)0.011 (4)0.014 (4)
C180.076 (6)0.092 (7)0.097 (8)0.038 (6)0.037 (5)0.019 (5)
C190.059 (6)0.116 (9)0.169 (11)0.004 (6)0.033 (6)0.046 (7)
C200.035 (4)0.055 (6)0.046 (5)0.016 (5)0.000 (4)0.021 (4)
C210.042 (4)0.049 (5)0.034 (4)0.023 (4)0.011 (3)0.002 (3)
C220.045 (4)0.040 (4)0.051 (5)0.023 (4)0.011 (3)0.004 (3)
C230.039 (4)0.029 (4)0.044 (5)0.021 (4)0.005 (4)0.001 (3)
C240.037 (4)0.034 (4)0.058 (6)0.003 (4)0.007 (4)0.002 (4)
C250.050 (5)0.043 (5)0.054 (6)0.002 (4)0.017 (4)0.005 (4)
C260.061 (5)0.042 (5)0.042 (5)0.014 (4)0.010 (4)0.001 (4)
C270.041 (4)0.050 (5)0.048 (5)0.001 (4)0.009 (4)0.008 (4)
C280.035 (4)0.054 (5)0.041 (5)0.014 (4)0.017 (4)0.011 (4)
C290.049 (5)0.033 (5)0.035 (4)0.015 (4)0.002 (4)0.007 (3)
C300.033 (4)0.035 (4)0.040 (4)0.013 (4)0.005 (3)0.005 (3)
C310.039 (4)0.036 (5)0.038 (4)0.023 (4)0.001 (3)0.002 (3)
C320.043 (4)0.057 (5)0.041 (5)0.033 (4)0.005 (4)0.002 (4)
C330.039 (4)0.051 (5)0.062 (5)0.014 (4)0.013 (4)0.014 (4)
C340.045 (5)0.050 (5)0.051 (5)0.021 (4)0.001 (4)0.008 (4)
C350.050 (5)0.037 (5)0.040 (5)0.017 (4)0.004 (4)0.001 (3)
C360.057 (5)0.030 (5)0.057 (5)0.003 (4)0.011 (4)0.006 (4)
C370.079 (6)0.062 (5)0.052 (5)0.027 (5)0.001 (4)0.013 (4)
C380.061 (5)0.051 (6)0.103 (7)0.004 (5)0.024 (5)0.013 (5)
Geometric parameters (Å, º) top
Cu1—O41.874 (4)C10—C111.435 (8)
Cu1—N11.893 (5)C10—H100.9300
Cu1—O51.917 (5)C11—C161.393 (8)
Cu1—O11.932 (4)C11—C121.415 (8)
Cu2—O91.874 (4)C12—C131.398 (9)
Cu2—N31.907 (5)C13—C141.371 (8)
Cu2—O61.922 (4)C14—C151.391 (8)
Cu2—O101.932 (5)C14—H140.9300
Br1—C131.912 (6)C15—C161.344 (9)
Br2—C151.878 (7)C16—H160.9300
Br3—C321.896 (6)C17—H170.9300
Br4—C341.884 (7)C18—H18A0.9600
N1—C101.279 (7)C18—H18B0.9600
N1—C21.465 (7)C18—H18C0.9600
N2—C171.297 (8)C19—H19A0.9600
N2—C191.440 (9)C19—H19B0.9600
N2—C181.443 (8)C19—H19C0.9600
N3—C291.267 (6)C20—C211.520 (8)
N3—C211.454 (6)C21—C221.536 (7)
N4—C361.303 (8)C21—H210.9800
N4—C381.446 (7)C22—C231.518 (8)
N4—C371.451 (7)C22—H22A0.9700
O1—C11.278 (7)C22—H22B0.9700
O2—C11.245 (7)C23—C281.362 (8)
O3—C71.358 (7)C23—C241.387 (7)
O3—H30.8200C24—C251.360 (8)
O4—C121.305 (7)C24—H240.9300
O5—C171.228 (8)C25—C261.361 (8)
O6—C201.274 (8)C25—H250.9300
O7—C201.229 (7)C26—C271.386 (8)
O8—C261.355 (7)C27—C281.384 (8)
O8—H80.8200C27—H270.9300
O9—C311.289 (6)C28—H280.9300
O10—C361.245 (7)C29—C301.449 (7)
C1—C21.506 (9)C29—H290.9300
C2—C31.524 (8)C30—C351.399 (8)
C2—H20.9800C30—C311.403 (8)
C3—C41.513 (8)C31—C321.421 (8)
C3—H3A0.9700C32—C331.368 (8)
C3—H3B0.9700C33—C341.391 (8)
C4—C51.366 (8)C33—H330.9300
C4—C91.389 (8)C34—C351.359 (8)
C5—C61.383 (8)C35—H350.9300
C5—H50.9300C36—H360.9300
C6—C71.373 (9)C37—H37A0.9600
C6—H60.9300C37—H37B0.9600
C7—C81.354 (8)C37—H37C0.9600
C8—C91.386 (8)C38—H38A0.9600
C8—H8A0.9300C38—H38B0.9600
C9—H90.9300C38—H38C0.9600
O4—Cu1—N194.3 (2)C11—C16—H16119.1
O4—Cu1—O592.5 (2)O5—C17—N2124.5 (8)
N1—Cu1—O5173.1 (2)O5—C17—H17117.8
O4—Cu1—O1177.0 (2)N2—C17—H17117.8
N1—Cu1—O184.6 (2)N2—C18—H18A109.5
O5—Cu1—O188.5 (2)N2—C18—H18B109.5
O9—Cu2—N395.0 (2)H18A—C18—H18B109.5
O9—Cu2—O6178.9 (2)N2—C18—H18C109.5
N3—Cu2—O685.1 (2)H18A—C18—H18C109.5
O9—Cu2—O1090.9 (2)H18B—C18—H18C109.5
N3—Cu2—O10173.7 (2)N2—C19—H19A109.5
O6—Cu2—O1089.0 (2)N2—C19—H19B109.5
C10—N1—C2120.1 (5)H19A—C19—H19B109.5
C10—N1—Cu1126.0 (4)N2—C19—H19C109.5
C2—N1—Cu1113.9 (4)H19A—C19—H19C109.5
C17—N2—C19118.9 (7)H19B—C19—H19C109.5
C17—N2—C18122.2 (7)O7—C20—O6123.6 (7)
C19—N2—C18118.9 (6)O7—C20—C21118.7 (7)
C29—N3—C21121.2 (5)O6—C20—C21117.7 (6)
C29—N3—Cu2125.2 (4)N3—C21—C20108.7 (5)
C21—N3—Cu2113.5 (4)N3—C21—C22112.6 (4)
C36—N4—C38120.5 (6)C20—C21—C22112.3 (5)
C36—N4—C37121.2 (6)N3—C21—H21107.7
C38—N4—C37118.3 (6)C20—C21—H21107.7
C1—O1—Cu1114.8 (4)C22—C21—H21107.7
C7—O3—H3109.5C23—C22—C21115.3 (5)
C12—O4—Cu1126.0 (4)C23—C22—H22A108.4
C17—O5—Cu1123.4 (5)C21—C22—H22A108.4
C20—O6—Cu2115.0 (4)C23—C22—H22B108.4
C26—O8—H8109.5C21—C22—H22B108.4
C31—O9—Cu2126.7 (4)H22A—C22—H22B107.5
C36—O10—Cu2124.0 (4)C28—C23—C24118.5 (6)
O2—C1—O1123.5 (7)C28—C23—C22121.2 (5)
O2—C1—C2119.3 (7)C24—C23—C22120.1 (6)
O1—C1—C2117.1 (6)C25—C24—C23119.9 (6)
N1—C2—C1108.5 (6)C25—C24—H24120.0
N1—C2—C3112.6 (6)C23—C24—H24120.0
C1—C2—C3110.1 (5)C24—C25—C26122.1 (6)
N1—C2—H2108.5C24—C25—H25118.9
C1—C2—H2108.5C26—C25—H25118.9
C3—C2—H2108.5O8—C26—C25119.7 (6)
C4—C3—C2114.2 (5)O8—C26—C27121.8 (7)
C4—C3—H3A108.7C25—C26—C27118.4 (7)
C2—C3—H3A108.7C28—C27—C26119.5 (7)
C4—C3—H3B108.7C28—C27—H27120.3
C2—C3—H3B108.7C26—C27—H27120.3
H3A—C3—H3B107.6C23—C28—C27121.4 (6)
C5—C4—C9117.7 (6)C23—C28—H28119.3
C5—C4—C3121.8 (6)C27—C28—H28119.3
C9—C4—C3120.4 (6)N3—C29—C30125.3 (6)
C4—C5—C6122.3 (6)N3—C29—H29117.4
C4—C5—H5118.8C30—C29—H29117.4
C6—C5—H5118.8C35—C30—C31121.0 (6)
C7—C6—C5119.2 (6)C35—C30—C29116.3 (6)
C7—C6—H6120.4C31—C30—C29122.7 (6)
C5—C6—H6120.4O9—C31—C30124.6 (6)
C8—C7—O3117.4 (6)O9—C31—C32120.7 (6)
C8—C7—C6119.5 (7)C30—C31—C32114.7 (6)
O3—C7—C6123.0 (6)C33—C32—C31124.1 (6)
C7—C8—C9121.4 (6)C33—C32—Br3119.3 (5)
C7—C8—H8A119.3C31—C32—Br3116.5 (5)
C9—C8—H8A119.3C32—C33—C34119.0 (6)
C8—C9—C4119.9 (6)C32—C33—H33120.5
C8—C9—H9120.1C34—C33—H33120.5
C4—C9—H9120.1C35—C34—C33119.2 (7)
N1—C10—C11126.0 (6)C35—C34—Br4121.5 (6)
N1—C10—H10117.0C33—C34—Br4119.3 (5)
C11—C10—H10117.0C34—C35—C30121.9 (6)
C16—C11—C12120.7 (6)C34—C35—H35119.0
C16—C11—C10118.3 (6)C30—C35—H35119.0
C12—C11—C10121.0 (6)O10—C36—N4122.9 (6)
O4—C12—C13119.7 (6)O10—C36—H36118.5
O4—C12—C11125.0 (6)N4—C36—H36118.5
C13—C12—C11115.3 (6)N4—C37—H37A109.5
C14—C13—C12123.3 (6)N4—C37—H37B109.5
C14—C13—Br1117.9 (5)H37A—C37—H37B109.5
C12—C13—Br1118.8 (5)N4—C37—H37C109.5
C13—C14—C15119.5 (6)H37A—C37—H37C109.5
C13—C14—H14120.2H37B—C37—H37C109.5
C15—C14—H14120.2N4—C38—H38A109.5
C16—C15—C14119.3 (6)N4—C38—H38B109.5
C16—C15—Br2121.4 (6)H38A—C38—H38B109.5
C14—C15—Br2119.2 (6)N4—C38—H38C109.5
C15—C16—C11121.8 (7)H38A—C38—H38C109.5
C15—C16—H16119.1H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O70.962.593.364 (9)137
C37—H37C···O20.962.483.307 (8)144
O3—H3···O1i0.821.982.772 (6)163
O8—H8···O6ii0.822.072.888 (6)176
C16—H16···O7iii0.932.523.422 (9)163
C29—H29···O2iv0.932.453.291 (8)150
C35—H35···O2iv0.932.593.408 (8)147
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C16H11Br2NO4)(C3H7NO)]
Mr577.71
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.4316 (19), 11.840 (2), 15.984 (2)
α, β, γ (°)88.998 (3), 83.562 (2), 73.210 (2)
V3)2057.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.98
Crystal size (mm)0.33 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.267, 0.498
No. of measured, independent and
observed [ > 2s(I)] reflections
10763, 7143, 3697
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.093, 1.00
No. of reflections7143
No. of parameters523
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.55

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O41.874 (4)Cu2—O91.874 (4)
Cu1—N11.893 (5)Cu2—N31.907 (5)
Cu1—O51.917 (5)Cu2—O61.922 (4)
Cu1—O11.932 (4)Cu2—O101.932 (5)
O4—Cu1—N194.3 (2)O9—Cu2—N395.0 (2)
O4—Cu1—O592.5 (2)O9—Cu2—O6178.9 (2)
N1—Cu1—O5173.1 (2)N3—Cu2—O685.1 (2)
O4—Cu1—O1177.0 (2)O9—Cu2—O1090.9 (2)
N1—Cu1—O184.6 (2)N3—Cu2—O10173.7 (2)
O5—Cu1—O188.5 (2)O6—Cu2—O1089.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O70.962.593.364 (9)137.3
C37—H37C···O20.962.483.307 (8)144.0
O3—H3···O1i0.821.982.772 (6)163.1
O8—H8···O6ii0.822.072.888 (6)175.8
C16—H16···O7iii0.932.523.422 (9)163.1
C29—H29···O2iv0.932.453.291 (8)150.1
C35—H35···O2iv0.932.593.408 (8)146.5
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z.
 

Acknowledgements

We acknowledge financial support by the NSFC (No. 20561001) and the EDF of Guangxi (No. 200607LX067).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationLi, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m601-m602
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds