metal-organic compounds
Tetrachlorido(2,3-di-2-pyridylpyrazine-κ2N1,N2)platinum(IV)
aDepartment of Chemistry, Payame Noor University, Iran, bIslamic Azad University, Doroud Branch, Doroud, Iran, cResearch Institute in Education, 16 Hojjat Dost Street, Vessal Shirazi Avenue, Tehran, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the title complex, [PtCl4(C14H10N4)], the PtIV atom is six-coordinated in an octahedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. Intermolecular C—H⋯Cl and C—H⋯N hydrogen bonds stabilize the crystal structure.
Related literature
For general background, see: Hedin (1886); Joergensen (1900); Bajusaz et al. (1989); Vorobevdesyatovskii et al. (1991). For related structures, see: Bokach et al. (2003); Casas et al. (2005); Crowder et al. (2004); Gaballa et al. (2003); Garnovskii et al. (2001); Gonzalez et al. (2002); Hafizovic et al. (2006); Hambley (1986); Kuduk-Jaworska et al. (1988, 1990); Junicke et al. (1997); Khripun et al. (2006); Kukushkin et al. (1998); Luzyanin, Haukka et al. (2002); Luzyanin, Kukushkin et al. (2002); Witkowski et al. (1997); Yousefi et al. (2007).
Experimental
Crystal data
|
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808007228/xu2404sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007228/xu2404Isup2.hkl
For the preparation of the title compound, a solution of 2,3-di-2-pyridylpyrazine (0.09 g, 0.37 mmol) in methanol (10 ml) was added to a solution of H2PtCl6.6H2O, (0.20 g, 0.37 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion in a solution of orange precipitated in DMSO after one week (yield 0.18 g).
H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C). The highest peak is 0.4 Å aprat from the Pt1 atom.
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[PtCl4(C14H10N4)] | Dx = 2.331 Mg m−3 |
Mr = 571.14 | Melting point: 565-566 K K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1050 reflections |
a = 6.6849 (4) Å | θ = 1.9–29.2° |
b = 14.9604 (12) Å | µ = 9.28 mm−1 |
c = 16.2761 (10) Å | T = 120 K |
V = 1627.75 (19) Å3 | Block, orange |
Z = 4 | 0.40 × 0.26 × 0.14 mm |
F(000) = 1072 |
Stoe IPDSII diffractometer | 4374 independent reflections |
Radiation source: fine-focus sealed tube | 4327 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 29.2°, θmin = 1.9° |
rotation method scans | h = −7→9 |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) | k = −20→17 |
Tmin = 0.070, Tmax = 0.270 | l = −22→22 |
9336 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0439P)2 + 6.2735P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.087 | (Δ/σ)max = 0.012 |
S = 1.10 | Δρmax = 1.44 e Å−3 |
4374 reflections | Δρmin = −1.82 e Å−3 |
209 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0011 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1849 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.005 (9) |
[PtCl4(C14H10N4)] | V = 1627.75 (19) Å3 |
Mr = 571.14 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.6849 (4) Å | µ = 9.28 mm−1 |
b = 14.9604 (12) Å | T = 120 K |
c = 16.2761 (10) Å | 0.40 × 0.26 × 0.14 mm |
Stoe IPDSII diffractometer | 4374 independent reflections |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) | 4327 reflections with I > 2σ(I) |
Tmin = 0.070, Tmax = 0.270 | Rint = 0.064 |
9336 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.087 | Δρmax = 1.44 e Å−3 |
S = 1.10 | Δρmin = −1.82 e Å−3 |
4374 reflections | Absolute structure: Flack (1983), 1849 Friedel pairs |
209 parameters | Absolute structure parameter: 0.005 (9) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2795 (10) | −0.5902 (5) | −0.4681 (4) | 0.0286 (13) | |
H1 | 0.3170 | −0.6300 | −0.5092 | 0.034* | |
C2 | 0.3870 (11) | −0.5866 (6) | −0.3975 (4) | 0.0331 (15) | |
H2 | 0.4966 | −0.6241 | −0.3901 | 0.040* | |
C3 | 0.3330 (11) | −0.5272 (6) | −0.3366 (4) | 0.0331 (14) | |
H3 | 0.4084 | −0.5231 | −0.2887 | 0.040* | |
C4 | 0.1659 (10) | −0.4738 (5) | −0.3472 (4) | 0.0275 (12) | |
H4 | 0.1233 | −0.4358 | −0.3055 | 0.033* | |
C5 | 0.0622 (8) | −0.4780 (4) | −0.4217 (4) | 0.0221 (10) | |
C6 | −0.1195 (9) | −0.4247 (4) | −0.4420 (4) | 0.0218 (11) | |
C7 | −0.3997 (8) | −0.4210 (5) | −0.5265 (4) | 0.0245 (12) | |
H7 | −0.4677 | −0.4395 | −0.5733 | 0.029* | |
C8 | −0.4867 (9) | −0.3598 (5) | −0.4741 (5) | 0.0315 (14) | |
H8 | −0.6191 | −0.3433 | −0.4828 | 0.038* | |
C9 | −0.1996 (9) | −0.3519 (4) | −0.3978 (4) | 0.0244 (12) | |
C10 | −0.0817 (10) | −0.2972 (4) | −0.3392 (4) | 0.0262 (12) | |
C11 | −0.1610 (11) | −0.2695 (5) | −0.2651 (5) | 0.0314 (14) | |
H11 | −0.2912 | −0.2840 | −0.2500 | 0.038* | |
C12 | −0.0403 (15) | −0.2197 (5) | −0.2143 (5) | 0.0403 (17) | |
H12 | −0.0855 | −0.2024 | −0.1627 | 0.048* | |
C13 | 0.1475 (13) | −0.1955 (5) | −0.2404 (5) | 0.0372 (16) | |
H13 | 0.2293 | −0.1601 | −0.2075 | 0.045* | |
C14 | 0.2123 (12) | −0.2246 (5) | −0.3161 (6) | 0.0378 (17) | |
H14 | 0.3391 | −0.2073 | −0.3334 | 0.045* | |
Cl1 | 0.1281 (2) | −0.41434 (11) | −0.62538 (10) | 0.0272 (3) | |
Cl2 | 0.1441 (2) | −0.63100 (12) | −0.65809 (10) | 0.0299 (3) | |
Cl3 | −0.2674 (2) | −0.52425 (12) | −0.69333 (11) | 0.0312 (3) | |
Cl4 | −0.2288 (3) | −0.65930 (12) | −0.53083 (13) | 0.0338 (4) | |
N1 | 0.1199 (7) | −0.5372 (4) | −0.4799 (3) | 0.0236 (10) | |
N2 | −0.2178 (7) | −0.4537 (4) | −0.5100 (4) | 0.0240 (10) | |
N3 | −0.3883 (8) | −0.3242 (4) | −0.4123 (5) | 0.0299 (12) | |
N4 | 0.1041 (8) | −0.2763 (4) | −0.3664 (4) | 0.0301 (12) | |
Pt1 | −0.05541 (3) | −0.537445 (15) | −0.582177 (14) | 0.02145 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.027 (3) | 0.033 (3) | 0.026 (3) | 0.013 (3) | 0.003 (3) | 0.001 (2) |
C2 | 0.026 (3) | 0.046 (4) | 0.027 (3) | 0.005 (3) | 0.000 (3) | 0.004 (3) |
C3 | 0.028 (3) | 0.044 (4) | 0.027 (3) | −0.001 (3) | −0.007 (3) | 0.005 (3) |
C4 | 0.026 (3) | 0.037 (3) | 0.020 (3) | 0.001 (3) | 0.000 (2) | 0.002 (2) |
C5 | 0.016 (2) | 0.030 (3) | 0.020 (2) | −0.005 (2) | 0.003 (2) | 0.001 (2) |
C6 | 0.018 (2) | 0.024 (3) | 0.023 (3) | −0.004 (2) | 0.001 (2) | 0.001 (2) |
C7 | 0.013 (2) | 0.029 (3) | 0.032 (3) | −0.002 (2) | 0.000 (2) | 0.004 (2) |
C8 | 0.017 (3) | 0.035 (3) | 0.043 (4) | 0.005 (2) | 0.001 (3) | 0.004 (3) |
C9 | 0.021 (3) | 0.025 (3) | 0.027 (3) | 0.001 (2) | 0.002 (2) | −0.002 (2) |
C10 | 0.023 (3) | 0.027 (3) | 0.028 (3) | 0.004 (2) | 0.003 (2) | 0.003 (2) |
C11 | 0.032 (3) | 0.029 (3) | 0.033 (3) | 0.002 (3) | 0.006 (3) | −0.001 (3) |
C12 | 0.057 (5) | 0.033 (3) | 0.031 (3) | 0.008 (4) | −0.005 (4) | −0.011 (3) |
C13 | 0.039 (4) | 0.034 (4) | 0.038 (4) | 0.001 (3) | −0.005 (3) | −0.004 (3) |
C14 | 0.034 (4) | 0.031 (4) | 0.049 (5) | −0.005 (3) | −0.004 (3) | 0.004 (3) |
Cl1 | 0.0207 (6) | 0.0351 (8) | 0.0258 (7) | −0.0030 (6) | −0.0009 (6) | 0.0029 (6) |
Cl2 | 0.0255 (7) | 0.0362 (8) | 0.0278 (7) | 0.0049 (6) | 0.0011 (6) | −0.0056 (6) |
Cl3 | 0.0239 (6) | 0.0386 (9) | 0.0312 (7) | 0.0024 (6) | −0.0081 (6) | −0.0064 (7) |
Cl4 | 0.0282 (7) | 0.0296 (8) | 0.0437 (9) | −0.0046 (6) | 0.0073 (7) | −0.0032 (7) |
N1 | 0.0149 (19) | 0.033 (3) | 0.022 (2) | −0.002 (2) | −0.0005 (17) | 0.003 (2) |
N2 | 0.0113 (19) | 0.029 (3) | 0.031 (3) | 0.0035 (19) | 0.0002 (18) | 0.002 (2) |
N3 | 0.019 (2) | 0.030 (3) | 0.040 (3) | 0.0024 (19) | 0.001 (2) | −0.002 (3) |
N4 | 0.025 (3) | 0.034 (3) | 0.031 (3) | −0.007 (2) | 0.002 (2) | 0.001 (2) |
Pt1 | 0.01531 (11) | 0.02622 (12) | 0.02281 (12) | 0.00055 (8) | −0.00071 (8) | −0.00174 (9) |
C1—N1 | 1.342 (8) | C9—N3 | 1.349 (8) |
C1—C2 | 1.357 (10) | C9—C10 | 1.484 (9) |
C1—H1 | 0.9300 | C10—N4 | 1.355 (9) |
C2—C3 | 1.379 (11) | C10—C11 | 1.382 (10) |
C2—H2 | 0.9300 | C11—C12 | 1.373 (11) |
C3—C4 | 1.385 (9) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.374 (13) |
C4—C5 | 1.398 (8) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.377 (12) |
C5—N1 | 1.353 (8) | C13—H13 | 0.9300 |
C5—C6 | 1.490 (8) | C14—N4 | 1.339 (10) |
C6—N2 | 1.359 (8) | C14—H14 | 0.9300 |
C6—C9 | 1.411 (9) | Cl1—Pt1 | 2.3219 (16) |
C7—N2 | 1.338 (7) | Cl2—Pt1 | 2.2945 (16) |
C7—C8 | 1.379 (10) | Cl3—Pt1 | 2.3066 (16) |
C7—H7 | 0.9300 | Cl4—Pt1 | 2.3164 (18) |
C8—N3 | 1.315 (10) | N1—Pt1 | 2.036 (5) |
C8—H8 | 0.9300 | N2—Pt1 | 2.032 (6) |
N1—C1—C2 | 121.2 (7) | C11—C12—C13 | 119.6 (8) |
N1—C1—H1 | 119.4 | C11—C12—H12 | 120.2 |
C2—C1—H1 | 119.4 | C13—C12—H12 | 120.2 |
C1—C2—C3 | 119.7 (7) | C12—C13—C14 | 118.7 (8) |
C1—C2—H2 | 120.2 | C12—C13—H13 | 120.6 |
C3—C2—H2 | 120.2 | C14—C13—H13 | 120.6 |
C2—C3—C4 | 119.6 (7) | N4—C14—C13 | 124.1 (8) |
C2—C3—H3 | 120.2 | N4—C14—H14 | 118.0 |
C4—C3—H3 | 120.2 | C13—C14—H14 | 118.0 |
C3—C4—C5 | 118.8 (6) | C1—N1—C5 | 120.9 (6) |
C3—C4—H4 | 120.6 | C1—N1—Pt1 | 125.0 (5) |
C5—C4—H4 | 120.6 | C5—N1—Pt1 | 114.1 (4) |
N1—C5—C4 | 119.7 (6) | C7—N2—C6 | 119.1 (6) |
N1—C5—C6 | 115.3 (5) | C7—N2—Pt1 | 126.5 (5) |
C4—C5—C6 | 124.9 (6) | C6—N2—Pt1 | 114.2 (4) |
N2—C6—C9 | 118.6 (6) | C8—N3—C9 | 118.5 (6) |
N2—C6—C5 | 113.8 (5) | C14—N4—C10 | 115.4 (7) |
C9—C6—C5 | 127.6 (6) | N2—Pt1—N1 | 80.4 (2) |
N2—C7—C8 | 120.1 (7) | N2—Pt1—Cl2 | 176.45 (16) |
N2—C7—H7 | 119.9 | N1—Pt1—Cl2 | 96.12 (17) |
C8—C7—H7 | 119.9 | N2—Pt1—Cl3 | 94.15 (16) |
N3—C8—C7 | 122.1 (6) | N1—Pt1—Cl3 | 174.20 (18) |
N3—C8—H8 | 119.0 | Cl2—Pt1—Cl3 | 89.26 (6) |
C7—C8—H8 | 119.0 | N2—Pt1—Cl4 | 90.54 (17) |
N3—C9—C6 | 120.2 (6) | N1—Pt1—Cl4 | 89.68 (17) |
N3—C9—C10 | 116.1 (6) | Cl2—Pt1—Cl4 | 90.30 (6) |
C6—C9—C10 | 123.5 (6) | Cl3—Pt1—Cl4 | 92.45 (7) |
N4—C10—C11 | 124.6 (7) | N2—Pt1—Cl1 | 88.17 (17) |
N4—C10—C9 | 113.8 (6) | N1—Pt1—Cl1 | 86.68 (17) |
C11—C10—C9 | 121.5 (6) | Cl2—Pt1—Cl1 | 90.78 (6) |
C12—C11—C10 | 117.6 (7) | Cl3—Pt1—Cl1 | 91.11 (6) |
C12—C11—H11 | 121.2 | Cl4—Pt1—Cl1 | 176.30 (7) |
C10—C11—H11 | 121.2 | ||
N1—C1—C2—C3 | −0.5 (12) | C8—C7—N2—C6 | −1.0 (10) |
C1—C2—C3—C4 | 2.0 (11) | C8—C7—N2—Pt1 | −175.7 (5) |
C2—C3—C4—C5 | −3.6 (10) | C9—C6—N2—C7 | −9.1 (9) |
C3—C4—C5—N1 | 3.6 (9) | C5—C6—N2—C7 | 169.0 (5) |
C3—C4—C5—C6 | 180.0 (6) | C9—C6—N2—Pt1 | 166.1 (5) |
N1—C5—C6—N2 | 9.9 (8) | C5—C6—N2—Pt1 | −15.7 (7) |
C4—C5—C6—N2 | −166.6 (6) | C7—C8—N3—C9 | −3.2 (11) |
N1—C5—C6—C9 | −172.2 (6) | C6—C9—N3—C8 | −7.3 (10) |
C4—C5—C6—C9 | 11.3 (10) | C10—C9—N3—C8 | 167.8 (7) |
N2—C7—C8—N3 | 7.7 (11) | C13—C14—N4—C10 | 2.0 (11) |
N2—C6—C9—N3 | 13.6 (10) | C11—C10—N4—C14 | −0.5 (10) |
C5—C6—C9—N3 | −164.2 (6) | C9—C10—N4—C14 | 178.0 (6) |
N2—C6—C9—C10 | −161.1 (6) | C7—N2—Pt1—N1 | −172.4 (6) |
C5—C6—C9—C10 | 21.1 (10) | C6—N2—Pt1—N1 | 12.8 (5) |
N3—C9—C10—N4 | −132.2 (7) | C7—N2—Pt1—Cl3 | 9.7 (6) |
C6—C9—C10—N4 | 42.7 (9) | C6—N2—Pt1—Cl3 | −165.2 (4) |
N3—C9—C10—C11 | 46.4 (9) | C7—N2—Pt1—Cl4 | −82.8 (5) |
C6—C9—C10—C11 | −138.7 (7) | C6—N2—Pt1—Cl4 | 102.3 (4) |
N4—C10—C11—C12 | −2.2 (11) | C7—N2—Pt1—Cl1 | 100.7 (5) |
C9—C10—C11—C12 | 179.4 (7) | C6—N2—Pt1—Cl1 | −74.2 (4) |
C10—C11—C12—C13 | 3.4 (11) | C1—N1—Pt1—N2 | 172.5 (6) |
C11—C12—C13—C14 | −2.1 (12) | C5—N1—Pt1—N2 | −7.1 (4) |
C12—C13—C14—N4 | −0.7 (12) | C1—N1—Pt1—Cl2 | −8.3 (6) |
C2—C1—N1—C5 | 0.5 (11) | C5—N1—Pt1—Cl2 | 172.0 (4) |
C2—C1—N1—Pt1 | −179.1 (6) | C1—N1—Pt1—Cl4 | 81.9 (6) |
C4—C5—N1—C1 | −2.1 (9) | C5—N1—Pt1—Cl4 | −97.7 (4) |
C6—C5—N1—C1 | −178.8 (6) | C1—N1—Pt1—Cl1 | −98.8 (6) |
C4—C5—N1—Pt1 | 177.5 (5) | C5—N1—Pt1—Cl1 | 81.6 (4) |
C6—C5—N1—Pt1 | 0.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.93 | 2.68 | 3.279 (7) | 122 |
C3—H3···Cl1i | 0.93 | 2.83 | 3.557 (7) | 136 |
C4—H4···N4 | 0.93 | 2.59 | 3.000 (10) | 107 |
C7—H7···Cl3 | 0.93 | 2.69 | 3.247 (7) | 120 |
C14—H14···Cl1ii | 0.93 | 2.74 | 3.599 (8) | 154 |
Symmetry codes: (i) −x+1/2, −y−1, z+1/2; (ii) x+1/2, −y−1/2, −z−1. |
Experimental details
Crystal data | |
Chemical formula | [PtCl4(C14H10N4)] |
Mr | 571.14 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 6.6849 (4), 14.9604 (12), 16.2761 (10) |
V (Å3) | 1627.75 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.28 |
Crystal size (mm) | 0.40 × 0.26 × 0.14 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) |
Tmin, Tmax | 0.070, 0.270 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9336, 4374, 4327 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.087, 1.10 |
No. of reflections | 4374 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.44, −1.82 |
Absolute structure | Flack (1983), 1849 Friedel pairs |
Absolute structure parameter | 0.005 (9) |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cl1—Pt1 | 2.3219 (16) | Cl4—Pt1 | 2.3164 (18) |
Cl2—Pt1 | 2.2945 (16) | N1—Pt1 | 2.036 (5) |
Cl3—Pt1 | 2.3066 (16) | N2—Pt1 | 2.032 (6) |
N2—Pt1—N1 | 80.4 (2) | Cl2—Pt1—Cl4 | 90.30 (6) |
N2—Pt1—Cl2 | 176.45 (16) | Cl3—Pt1—Cl4 | 92.45 (7) |
N1—Pt1—Cl2 | 96.12 (17) | N2—Pt1—Cl1 | 88.17 (17) |
N2—Pt1—Cl3 | 94.15 (16) | N1—Pt1—Cl1 | 86.68 (17) |
N1—Pt1—Cl3 | 174.20 (18) | Cl2—Pt1—Cl1 | 90.78 (6) |
Cl2—Pt1—Cl3 | 89.26 (6) | Cl3—Pt1—Cl1 | 91.11 (6) |
N2—Pt1—Cl4 | 90.54 (17) | Cl4—Pt1—Cl1 | 176.30 (7) |
N1—Pt1—Cl4 | 89.68 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.93 | 2.68 | 3.279 (7) | 122 |
C3—H3···Cl1i | 0.93 | 2.83 | 3.557 (7) | 136 |
C4—H4···N4 | 0.93 | 2.59 | 3.000 (10) | 107 |
C7—H7···Cl3 | 0.93 | 2.69 | 3.247 (7) | 120 |
C14—H14···Cl1ii | 0.93 | 2.74 | 3.599 (8) | 154 |
Symmetry codes: (i) −x+1/2, −y−1, z+1/2; (ii) x+1/2, −y−1/2, −z−1. |
Acknowledgements
We are grateful to Payam Nor University for financial support.
References
Bajusaz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. (1989). Proc. Natl Acad. Sci. USA, 86, 6313–6317. PubMed Web of Science Google Scholar
Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). Polyhedron, 24, 1196–1202. Web of Science CSD CrossRef CAS Google Scholar
Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710. Web of Science CSD CrossRef CAS Google Scholar
Garnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans. pp. 560–566. Web of Science CSD CrossRef Google Scholar
Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–478. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hambley, T. W. (1986). Acta Cryst. C42, 49–51. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hedin, S. G. (1886). Acta Univ. Lund. 22, 1–6. Google Scholar
Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046–2049. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Joergensen, S. M. (1900). Z. Anorg. Chem. 25, 353–377. Google Scholar
Junicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 603–607. CSD CrossRef CAS Web of Science Google Scholar
Khripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). Inorg. Chim. Acta, 359, 320–326. Web of Science CSD CrossRef CAS Google Scholar
Kukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). Inorg. Chem. 37, 6511–6517. Web of Science CSD CrossRef PubMed CAS Google Scholar
Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887. Web of Science CSD CrossRef Google Scholar
Luzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 2981–2986. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). Zh. Obshch. Khim. 61, 709–716. CAS Google Scholar
Witkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315–1316. CSD CrossRef Web of Science Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869–m2870. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amine platinum(IV) complexes have been known since the end of the last century (Hedin, 1886; Joergensen, 1900). Some of them have cancerostatic properties from which new interest aroused in these complexes (Bajusaz et al., 1989; Vorobevdesyatovskii et al., 1991). Due to the kinetic inertness of hexachloro-platinate(IV), cis- and trans-[PtC14L2] complexes (L=N, O, P, S donor ligand) were mainly prepared by oxidation reactions of the corresponding platinum(II) complexes [PtCl2L2] (Hedin, 1886; Joergensen, 1900).
Several PtIV complexes, with formula [PtCl4(N—N)], such as [PtCl4(bipyi)] (II) (Gaballa et al., 2003), [PtCl4(Me2bim)] (III) (Casas et al., 2005), [PtCl4(bipy)] (IV) (Hambley, 1986), [PtCl4(dcbipy)].H2O (V) (Hafizovic et al., 2006) and [PtCl4(dpk)] (VI) (Crowder et al., 2004) [where bipyi is 2,2'-bipyrimidinyl, Me2bim is 1,1'-dimethyl-2,2'-bi-imidazolyl, bipy is 2,2'-bipyridine, dcbipy is 2,2'-bipyridine-5,5'-dicarboxylic acid and dpk is bis(2-pyridyl)ketone] have been synthesized and characterized by single-crystal X-ray diffraction method.
There are also several PtIV complexes with formula [PtCl4L2], such as cis- and trans-[PtCl4(py)2] (VII) (Junicke et al., 1997), cis- and trans-[PtCl4(PzH)2] (VIII) (Khripun et al., 2006), trans-[PtCl4(NH3)2](1-Mu) (IX) (Witkowski et al., 1997), trans-[PtCl4(1-Prim)2] (X) (Kuduk-Jaworska et al., 1988), cis-[PtCl4(1-Etim)2] (XI) (Kuduk-Jaworska et al., 1990), trans-[PtCl4{NH=C(NMe2)OH}2] (XII) (Bokach et al., 2003), trans-[PtCl4{NH=C(Me)ON=CMe2}2] (XIII) (Kukushkin et al., 1998), cis-[PtCl4{NH=C(Et)N=CPh2}2] (XIV) (Garnovskii et al., 2001), trans- [PtCl4{NH=C(Et)ON=C(OH)Ph}2].2DMSO (XV) (Luzyanin, Kukushkin et al., 2002), trans-[PtCl4{NH=C(OMe)But}2] (XVI) (Gonzalez et al., 2002), trans-[PtCl4{NH=C(OH)Et}2] (XVII) (Luzyanin, Haukka et al., 2002) and trans- [PtCl4(pz)2] (XVIII) (Yousefi et al., 2007) [where PzH is pyrazole, 1-Mu is 1-methyluracil, 1-Prim is 1-propylimidazole 1-Etim is 1-ethylimidazoyl and Pz is pyrazine] have been synthesized and characterized by single-crystal X-ray diffraction method. We report herein the synthesis and crystal structure of the title compound.
In the mononuclear title compound (Fig. 1), the PtIV atom is six-coordinated in octahedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. The Pt—Cl and Pt—N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III) and (V).
In the crystal structure, intermolecular C—H···Cl and C—H···N hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure (Fig. 2).