metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m575-m576

Tetra­chlorido(2,3-di-2-pyridylpyrazine-κ2N1,N2)platinum(IV)

aDepartment of Chemistry, Payame Noor University, Iran, bIslamic Azad University, Doroud Branch, Doroud, Iran, cResearch Institute in Education, 16 Hojjat Dost Street, Vessal Shirazi Avenue, Tehran, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 25 February 2008; accepted 17 March 2008; online 29 March 2008)

In the title complex, [PtCl4(C14H10N4)], the PtIV atom is six-coordinated in an octa­hedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. Inter­molecular C—H⋯Cl and C—H⋯N hydrogen bonds stabilize the crystal structure.

Related literature

For general background, see: Hedin (1886[Hedin, S. G. (1886). Acta Univ. Lund. 22, 1-6.]); Joergensen (1900[Joergensen, S. M. (1900). Z. Anorg. Chem. 25, 353-377.]); Bajusaz et al. (1989[Bajusaz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. (1989). Proc. Natl Acad. Sci. USA, 86, 6313-6317.]); Vorobevdesyatovskii et al. (1991[Vorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). Zh. Obshch. Khim. 61, 709-716.]). For related structures, see: Bokach et al. (2003[Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560-7568.]); Casas et al. (2005[Casas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). Polyhedron, 24, 1196-1202.]); Crowder et al. (2004[Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72-78.]); Gaballa et al. (2003[Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703-710.]); Garnovskii et al. (2001[Garnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans. pp. 560-566.]); Gonzalez et al. (2002[Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470-478.]); Hafizovic et al. (2006[Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414-m416.]); Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Kuduk-Jaworska et al. (1988[Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437-439.], 1990[Kuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046-2049.]); Junicke et al. (1997[Junicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 603-607.]); Khripun et al. (2006[Khripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). Inorg. Chim. Acta, 359, 320-326.]); Kukushkin et al. (1998[Kukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). Inorg. Chem. 37, 6511-6517.]); Luzyanin, Haukka et al. (2002[Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882-1887.]); Luzyanin, Kukushkin et al. (2002[Luzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 2981-2986.]); Witkowski et al. (1997[Witkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315-1316.]); Yousefi et al. (2007[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869-m2870.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl4(C14H10N4)]

  • Mr = 571.14

  • Orthorhombic, P 21 21 21

  • a = 6.6849 (4) Å

  • b = 14.9604 (12) Å

  • c = 16.2761 (10) Å

  • V = 1627.75 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.28 mm−1

  • T = 120 (2) K

  • 0.40 × 0.26 × 0.14 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.070, Tmax = 0.270

  • 9336 measured reflections

  • 4374 independent reflections

  • 4327 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.10

  • 4374 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −1.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1849 Friedel pairs

  • Flack parameter: 0.005 (9)

Table 1
Selected geometric parameters (Å, °)

Cl1—Pt1 2.3219 (16)
Cl2—Pt1 2.2945 (16)
Cl3—Pt1 2.3066 (16)
Cl4—Pt1 2.3164 (18)
N1—Pt1 2.036 (5)
N2—Pt1 2.032 (6)
N2—Pt1—N1 80.4 (2)
N2—Pt1—Cl2 176.45 (16)
N1—Pt1—Cl2 96.12 (17)
N2—Pt1—Cl3 94.15 (16)
N1—Pt1—Cl3 174.20 (18)
Cl2—Pt1—Cl3 89.26 (6)
N2—Pt1—Cl4 90.54 (17)
N1—Pt1—Cl4 89.68 (17)
Cl2—Pt1—Cl4 90.30 (6)
Cl3—Pt1—Cl4 92.45 (7)
N2—Pt1—Cl1 88.17 (17)
N1—Pt1—Cl1 86.68 (17)
Cl2—Pt1—Cl1 90.78 (6)
Cl3—Pt1—Cl1 91.11 (6)
Cl4—Pt1—Cl1 176.30 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.68 3.279 (7) 122
C3—H3⋯Cl1i 0.93 2.83 3.557 (7) 136
C4—H4⋯N4 0.93 2.59 3.000 (10) 107
C7—H7⋯Cl3 0.93 2.69 3.247 (7) 120
C14—H14⋯Cl1ii 0.93 2.74 3.599 (8) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z-1].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Amine platinum(IV) complexes have been known since the end of the last century (Hedin, 1886; Joergensen, 1900). Some of them have cancerostatic properties from which new interest aroused in these complexes (Bajusaz et al., 1989; Vorobevdesyatovskii et al., 1991). Due to the kinetic inertness of hexachloro-platinate(IV), cis- and trans-[PtC14L2] complexes (L=N, O, P, S donor ligand) were mainly prepared by oxidation reactions of the corresponding platinum(II) complexes [PtCl2L2] (Hedin, 1886; Joergensen, 1900).

Several PtIV complexes, with formula [PtCl4(N—N)], such as [PtCl4(bipyi)] (II) (Gaballa et al., 2003), [PtCl4(Me2bim)] (III) (Casas et al., 2005), [PtCl4(bipy)] (IV) (Hambley, 1986), [PtCl4(dcbipy)].H2O (V) (Hafizovic et al., 2006) and [PtCl4(dpk)] (VI) (Crowder et al., 2004) [where bipyi is 2,2'-bipyrimidinyl, Me2bim is 1,1'-dimethyl-2,2'-bi-imidazolyl, bipy is 2,2'-bipyridine, dcbipy is 2,2'-bipyridine-5,5'-dicarboxylic acid and dpk is bis(2-pyridyl)ketone] have been synthesized and characterized by single-crystal X-ray diffraction method.

There are also several PtIV complexes with formula [PtCl4L2], such as cis- and trans-[PtCl4(py)2] (VII) (Junicke et al., 1997), cis- and trans-[PtCl4(PzH)2] (VIII) (Khripun et al., 2006), trans-[PtCl4(NH3)2](1-Mu) (IX) (Witkowski et al., 1997), trans-[PtCl4(1-Prim)2] (X) (Kuduk-Jaworska et al., 1988), cis-[PtCl4(1-Etim)2] (XI) (Kuduk-Jaworska et al., 1990), trans-[PtCl4{NH=C(NMe2)OH}2] (XII) (Bokach et al., 2003), trans-[PtCl4{NH=C(Me)ON=CMe2}2] (XIII) (Kukushkin et al., 1998), cis-[PtCl4{NH=C(Et)N=CPh2}2] (XIV) (Garnovskii et al., 2001), trans- [PtCl4{NH=C(Et)ON=C(OH)Ph}2].2DMSO (XV) (Luzyanin, Kukushkin et al., 2002), trans-[PtCl4{NH=C(OMe)But}2] (XVI) (Gonzalez et al., 2002), trans-[PtCl4{NH=C(OH)Et}2] (XVII) (Luzyanin, Haukka et al., 2002) and trans- [PtCl4(pz)2] (XVIII) (Yousefi et al., 2007) [where PzH is pyrazole, 1-Mu is 1-methyluracil, 1-Prim is 1-propylimidazole 1-Etim is 1-ethylimidazoyl and Pz is pyrazine] have been synthesized and characterized by single-crystal X-ray diffraction method. We report herein the synthesis and crystal structure of the title compound.

In the mononuclear title compound (Fig. 1), the PtIV atom is six-coordinated in octahedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. The Pt—Cl and Pt—N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III) and (V).

In the crystal structure, intermolecular C—H···Cl and C—H···N hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For general background, see: Hedin (1886); Joergensen (1900); Bajusaz et al. (1989); Vorobevdesyatovskii et al. (1991). For related structures, see: Bokach et al. (2003); Casas et al. (2005); Crowder et al. (2004); Gaballa et al. (2003); Garnovskii et al. (2001); Gonzalez et al. (2002); Hafizovic et al. (2006); Hambley (1986); Kuduk-Jaworska et al. (1988, 1990); Junicke et al. (1997); Khripun et al. (2006); Kukushkin et al. (1998); Luzyanin, Haukka et al. (2002); Luzyanin, Kukushkin et al. (2002); Witkowski et al. (1997); Yousefi et al. (2007).

Experimental top

For the preparation of the title compound, a solution of 2,3-di-2-pyridylpyrazine (0.09 g, 0.37 mmol) in methanol (10 ml) was added to a solution of H2PtCl6.6H2O, (0.20 g, 0.37 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion in a solution of orange precipitated in DMSO after one week (yield 0.18 g).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C). The highest peak is 0.4 Å aprat from the Pt1 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Tetrachlorido(2,3-di-2-pyridylpyrazine-κ2N1,N2)platinum(IV) top
Crystal data top
[PtCl4(C14H10N4)]Dx = 2.331 Mg m3
Mr = 571.14Melting point: 565-566 K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1050 reflections
a = 6.6849 (4) Åθ = 1.9–29.2°
b = 14.9604 (12) ŵ = 9.28 mm1
c = 16.2761 (10) ÅT = 120 K
V = 1627.75 (19) Å3Block, orange
Z = 40.40 × 0.26 × 0.14 mm
F(000) = 1072
Data collection top
Stoe IPDSII
diffractometer
4374 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.9°
rotation method scansh = 79
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
k = 2017
Tmin = 0.070, Tmax = 0.270l = 2222
9336 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0439P)2 + 6.2735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.012
S = 1.10Δρmax = 1.44 e Å3
4374 reflectionsΔρmin = 1.82 e Å3
209 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0011 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1849 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.005 (9)
Crystal data top
[PtCl4(C14H10N4)]V = 1627.75 (19) Å3
Mr = 571.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6849 (4) ŵ = 9.28 mm1
b = 14.9604 (12) ÅT = 120 K
c = 16.2761 (10) Å0.40 × 0.26 × 0.14 mm
Data collection top
Stoe IPDSII
diffractometer
4374 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
4327 reflections with I > 2σ(I)
Tmin = 0.070, Tmax = 0.270Rint = 0.064
9336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087Δρmax = 1.44 e Å3
S = 1.10Δρmin = 1.82 e Å3
4374 reflectionsAbsolute structure: Flack (1983), 1849 Friedel pairs
209 parametersAbsolute structure parameter: 0.005 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2795 (10)0.5902 (5)0.4681 (4)0.0286 (13)
H10.31700.63000.50920.034*
C20.3870 (11)0.5866 (6)0.3975 (4)0.0331 (15)
H20.49660.62410.39010.040*
C30.3330 (11)0.5272 (6)0.3366 (4)0.0331 (14)
H30.40840.52310.28870.040*
C40.1659 (10)0.4738 (5)0.3472 (4)0.0275 (12)
H40.12330.43580.30550.033*
C50.0622 (8)0.4780 (4)0.4217 (4)0.0221 (10)
C60.1195 (9)0.4247 (4)0.4420 (4)0.0218 (11)
C70.3997 (8)0.4210 (5)0.5265 (4)0.0245 (12)
H70.46770.43950.57330.029*
C80.4867 (9)0.3598 (5)0.4741 (5)0.0315 (14)
H80.61910.34330.48280.038*
C90.1996 (9)0.3519 (4)0.3978 (4)0.0244 (12)
C100.0817 (10)0.2972 (4)0.3392 (4)0.0262 (12)
C110.1610 (11)0.2695 (5)0.2651 (5)0.0314 (14)
H110.29120.28400.25000.038*
C120.0403 (15)0.2197 (5)0.2143 (5)0.0403 (17)
H120.08550.20240.16270.048*
C130.1475 (13)0.1955 (5)0.2404 (5)0.0372 (16)
H130.22930.16010.20750.045*
C140.2123 (12)0.2246 (5)0.3161 (6)0.0378 (17)
H140.33910.20730.33340.045*
Cl10.1281 (2)0.41434 (11)0.62538 (10)0.0272 (3)
Cl20.1441 (2)0.63100 (12)0.65809 (10)0.0299 (3)
Cl30.2674 (2)0.52425 (12)0.69333 (11)0.0312 (3)
Cl40.2288 (3)0.65930 (12)0.53083 (13)0.0338 (4)
N10.1199 (7)0.5372 (4)0.4799 (3)0.0236 (10)
N20.2178 (7)0.4537 (4)0.5100 (4)0.0240 (10)
N30.3883 (8)0.3242 (4)0.4123 (5)0.0299 (12)
N40.1041 (8)0.2763 (4)0.3664 (4)0.0301 (12)
Pt10.05541 (3)0.537445 (15)0.582177 (14)0.02145 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (3)0.033 (3)0.026 (3)0.013 (3)0.003 (3)0.001 (2)
C20.026 (3)0.046 (4)0.027 (3)0.005 (3)0.000 (3)0.004 (3)
C30.028 (3)0.044 (4)0.027 (3)0.001 (3)0.007 (3)0.005 (3)
C40.026 (3)0.037 (3)0.020 (3)0.001 (3)0.000 (2)0.002 (2)
C50.016 (2)0.030 (3)0.020 (2)0.005 (2)0.003 (2)0.001 (2)
C60.018 (2)0.024 (3)0.023 (3)0.004 (2)0.001 (2)0.001 (2)
C70.013 (2)0.029 (3)0.032 (3)0.002 (2)0.000 (2)0.004 (2)
C80.017 (3)0.035 (3)0.043 (4)0.005 (2)0.001 (3)0.004 (3)
C90.021 (3)0.025 (3)0.027 (3)0.001 (2)0.002 (2)0.002 (2)
C100.023 (3)0.027 (3)0.028 (3)0.004 (2)0.003 (2)0.003 (2)
C110.032 (3)0.029 (3)0.033 (3)0.002 (3)0.006 (3)0.001 (3)
C120.057 (5)0.033 (3)0.031 (3)0.008 (4)0.005 (4)0.011 (3)
C130.039 (4)0.034 (4)0.038 (4)0.001 (3)0.005 (3)0.004 (3)
C140.034 (4)0.031 (4)0.049 (5)0.005 (3)0.004 (3)0.004 (3)
Cl10.0207 (6)0.0351 (8)0.0258 (7)0.0030 (6)0.0009 (6)0.0029 (6)
Cl20.0255 (7)0.0362 (8)0.0278 (7)0.0049 (6)0.0011 (6)0.0056 (6)
Cl30.0239 (6)0.0386 (9)0.0312 (7)0.0024 (6)0.0081 (6)0.0064 (7)
Cl40.0282 (7)0.0296 (8)0.0437 (9)0.0046 (6)0.0073 (7)0.0032 (7)
N10.0149 (19)0.033 (3)0.022 (2)0.002 (2)0.0005 (17)0.003 (2)
N20.0113 (19)0.029 (3)0.031 (3)0.0035 (19)0.0002 (18)0.002 (2)
N30.019 (2)0.030 (3)0.040 (3)0.0024 (19)0.001 (2)0.002 (3)
N40.025 (3)0.034 (3)0.031 (3)0.007 (2)0.002 (2)0.001 (2)
Pt10.01531 (11)0.02622 (12)0.02281 (12)0.00055 (8)0.00071 (8)0.00174 (9)
Geometric parameters (Å, º) top
C1—N11.342 (8)C9—N31.349 (8)
C1—C21.357 (10)C9—C101.484 (9)
C1—H10.9300C10—N41.355 (9)
C2—C31.379 (11)C10—C111.382 (10)
C2—H20.9300C11—C121.373 (11)
C3—C41.385 (9)C11—H110.9300
C3—H30.9300C12—C131.374 (13)
C4—C51.398 (8)C12—H120.9300
C4—H40.9300C13—C141.377 (12)
C5—N11.353 (8)C13—H130.9300
C5—C61.490 (8)C14—N41.339 (10)
C6—N21.359 (8)C14—H140.9300
C6—C91.411 (9)Cl1—Pt12.3219 (16)
C7—N21.338 (7)Cl2—Pt12.2945 (16)
C7—C81.379 (10)Cl3—Pt12.3066 (16)
C7—H70.9300Cl4—Pt12.3164 (18)
C8—N31.315 (10)N1—Pt12.036 (5)
C8—H80.9300N2—Pt12.032 (6)
N1—C1—C2121.2 (7)C11—C12—C13119.6 (8)
N1—C1—H1119.4C11—C12—H12120.2
C2—C1—H1119.4C13—C12—H12120.2
C1—C2—C3119.7 (7)C12—C13—C14118.7 (8)
C1—C2—H2120.2C12—C13—H13120.6
C3—C2—H2120.2C14—C13—H13120.6
C2—C3—C4119.6 (7)N4—C14—C13124.1 (8)
C2—C3—H3120.2N4—C14—H14118.0
C4—C3—H3120.2C13—C14—H14118.0
C3—C4—C5118.8 (6)C1—N1—C5120.9 (6)
C3—C4—H4120.6C1—N1—Pt1125.0 (5)
C5—C4—H4120.6C5—N1—Pt1114.1 (4)
N1—C5—C4119.7 (6)C7—N2—C6119.1 (6)
N1—C5—C6115.3 (5)C7—N2—Pt1126.5 (5)
C4—C5—C6124.9 (6)C6—N2—Pt1114.2 (4)
N2—C6—C9118.6 (6)C8—N3—C9118.5 (6)
N2—C6—C5113.8 (5)C14—N4—C10115.4 (7)
C9—C6—C5127.6 (6)N2—Pt1—N180.4 (2)
N2—C7—C8120.1 (7)N2—Pt1—Cl2176.45 (16)
N2—C7—H7119.9N1—Pt1—Cl296.12 (17)
C8—C7—H7119.9N2—Pt1—Cl394.15 (16)
N3—C8—C7122.1 (6)N1—Pt1—Cl3174.20 (18)
N3—C8—H8119.0Cl2—Pt1—Cl389.26 (6)
C7—C8—H8119.0N2—Pt1—Cl490.54 (17)
N3—C9—C6120.2 (6)N1—Pt1—Cl489.68 (17)
N3—C9—C10116.1 (6)Cl2—Pt1—Cl490.30 (6)
C6—C9—C10123.5 (6)Cl3—Pt1—Cl492.45 (7)
N4—C10—C11124.6 (7)N2—Pt1—Cl188.17 (17)
N4—C10—C9113.8 (6)N1—Pt1—Cl186.68 (17)
C11—C10—C9121.5 (6)Cl2—Pt1—Cl190.78 (6)
C12—C11—C10117.6 (7)Cl3—Pt1—Cl191.11 (6)
C12—C11—H11121.2Cl4—Pt1—Cl1176.30 (7)
C10—C11—H11121.2
N1—C1—C2—C30.5 (12)C8—C7—N2—C61.0 (10)
C1—C2—C3—C42.0 (11)C8—C7—N2—Pt1175.7 (5)
C2—C3—C4—C53.6 (10)C9—C6—N2—C79.1 (9)
C3—C4—C5—N13.6 (9)C5—C6—N2—C7169.0 (5)
C3—C4—C5—C6180.0 (6)C9—C6—N2—Pt1166.1 (5)
N1—C5—C6—N29.9 (8)C5—C6—N2—Pt115.7 (7)
C4—C5—C6—N2166.6 (6)C7—C8—N3—C93.2 (11)
N1—C5—C6—C9172.2 (6)C6—C9—N3—C87.3 (10)
C4—C5—C6—C911.3 (10)C10—C9—N3—C8167.8 (7)
N2—C7—C8—N37.7 (11)C13—C14—N4—C102.0 (11)
N2—C6—C9—N313.6 (10)C11—C10—N4—C140.5 (10)
C5—C6—C9—N3164.2 (6)C9—C10—N4—C14178.0 (6)
N2—C6—C9—C10161.1 (6)C7—N2—Pt1—N1172.4 (6)
C5—C6—C9—C1021.1 (10)C6—N2—Pt1—N112.8 (5)
N3—C9—C10—N4132.2 (7)C7—N2—Pt1—Cl39.7 (6)
C6—C9—C10—N442.7 (9)C6—N2—Pt1—Cl3165.2 (4)
N3—C9—C10—C1146.4 (9)C7—N2—Pt1—Cl482.8 (5)
C6—C9—C10—C11138.7 (7)C6—N2—Pt1—Cl4102.3 (4)
N4—C10—C11—C122.2 (11)C7—N2—Pt1—Cl1100.7 (5)
C9—C10—C11—C12179.4 (7)C6—N2—Pt1—Cl174.2 (4)
C10—C11—C12—C133.4 (11)C1—N1—Pt1—N2172.5 (6)
C11—C12—C13—C142.1 (12)C5—N1—Pt1—N27.1 (4)
C12—C13—C14—N40.7 (12)C1—N1—Pt1—Cl28.3 (6)
C2—C1—N1—C50.5 (11)C5—N1—Pt1—Cl2172.0 (4)
C2—C1—N1—Pt1179.1 (6)C1—N1—Pt1—Cl481.9 (6)
C4—C5—N1—C12.1 (9)C5—N1—Pt1—Cl497.7 (4)
C6—C5—N1—C1178.8 (6)C1—N1—Pt1—Cl198.8 (6)
C4—C5—N1—Pt1177.5 (5)C5—N1—Pt1—Cl181.6 (4)
C6—C5—N1—Pt10.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.279 (7)122
C3—H3···Cl1i0.932.833.557 (7)136
C4—H4···N40.932.593.000 (10)107
C7—H7···Cl30.932.693.247 (7)120
C14—H14···Cl1ii0.932.743.599 (8)154
Symmetry codes: (i) x+1/2, y1, z+1/2; (ii) x+1/2, y1/2, z1.

Experimental details

Crystal data
Chemical formula[PtCl4(C14H10N4)]
Mr571.14
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)6.6849 (4), 14.9604 (12), 16.2761 (10)
V3)1627.75 (19)
Z4
Radiation typeMo Kα
µ (mm1)9.28
Crystal size (mm)0.40 × 0.26 × 0.14
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.070, 0.270
No. of measured, independent and
observed [I > 2σ(I)] reflections
9336, 4374, 4327
Rint0.064
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.10
No. of reflections4374
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 1.82
Absolute structureFlack (1983), 1849 Friedel pairs
Absolute structure parameter0.005 (9)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—Pt12.3219 (16)Cl4—Pt12.3164 (18)
Cl2—Pt12.2945 (16)N1—Pt12.036 (5)
Cl3—Pt12.3066 (16)N2—Pt12.032 (6)
N2—Pt1—N180.4 (2)Cl2—Pt1—Cl490.30 (6)
N2—Pt1—Cl2176.45 (16)Cl3—Pt1—Cl492.45 (7)
N1—Pt1—Cl296.12 (17)N2—Pt1—Cl188.17 (17)
N2—Pt1—Cl394.15 (16)N1—Pt1—Cl186.68 (17)
N1—Pt1—Cl3174.20 (18)Cl2—Pt1—Cl190.78 (6)
Cl2—Pt1—Cl389.26 (6)Cl3—Pt1—Cl191.11 (6)
N2—Pt1—Cl490.54 (17)Cl4—Pt1—Cl1176.30 (7)
N1—Pt1—Cl489.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.279 (7)122
C3—H3···Cl1i0.932.833.557 (7)136
C4—H4···N40.932.593.000 (10)107
C7—H7···Cl30.932.693.247 (7)120
C14—H14···Cl1ii0.932.743.599 (8)154
Symmetry codes: (i) x+1/2, y1, z+1/2; (ii) x+1/2, y1/2, z1.
 

Acknowledgements

We are grateful to Payam Nor University for financial support.

References

First citationBajusaz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. (1989). Proc. Natl Acad. Sci. USA, 86, 6313–6317.  PubMed Web of Science Google Scholar
First citationBokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). Polyhedron, 24, 1196–1202.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans. pp. 560–566.  Web of Science CSD CrossRef Google Scholar
First citationGonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–478.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHedin, S. G. (1886). Acta Univ. Lund. 22, 1–6.  Google Scholar
First citationKuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046–2049.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoergensen, S. M. (1900). Z. Anorg. Chem. 25, 353–377.  Google Scholar
First citationJunicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 603–607.  CSD CrossRef CAS Web of Science Google Scholar
First citationKhripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). Inorg. Chim. Acta, 359, 320–326.  Web of Science CSD CrossRef CAS Google Scholar
First citationKukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). Inorg. Chem. 37, 6511–6517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887.  Web of Science CSD CrossRef Google Scholar
First citationLuzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 2981–2986.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). Zh. Obshch. Khim. 61, 709–716.  CAS Google Scholar
First citationWitkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315–1316.  CSD CrossRef Web of Science Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869–m2870.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m575-m576
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds