organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­bromo-2-hy­droxy­benzaldehyde

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University-Jinchuan Group Ltd Joint Laboratory of Metal Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: njutljl@163.com, whuang@nju.edu.cn

(Received 5 March 2008; accepted 1 April 2008; online 4 April 2008)

The title compound, C7H4Br2O2, exhibits a layer packing structure via weak ππ stacking inter­actions [centroid–centroid distances between adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å]. Mol­ecules in each layer are linked by inter­molecular O—H⋯O hydrogen bonding and Br⋯Br inter­actions [3.772 (4) Å]. There are two mol­ecules in the asymmetric unit.

Related literature

For related compounds, see Harkat et al. (2008[Harkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem. 73, 1620-1623.]); Lu et al. (2006[Lu, Z. L., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538-3548.]); Duan et al. (2007[Duan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem. 72, 10283-10286.]); Zhang et al. (2007[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535-m536.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4Br2O2

  • Mr = 279.92

  • Monoclinic, P 21 /c

  • a = 16.474 (8) Å

  • b = 14.025 (10) Å

  • c = 7.531 (7) Å

  • β = 103.212 (2)°

  • V = 1694 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.52 mm−1

  • T = 291 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.450, Tmax = 0.450 (expected range = 0.386–0.386)

  • 8777 measured reflections

  • 3328 independent reflections

  • 1670 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 0.79

  • 3328 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.94 2.660 (6) 146
O4—H4A⋯O3 0.82 2.01 2.713 (6) 143
O4—H4A⋯O1i 0.82 2.29 2.863 (6) 128
C7—H7⋯O3ii 0.93 2.55 3.122 (8) 120
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Slicylaldehyde and its derivatives are an important class of compounds which can be used in a variety of studies such as organic synthesis, catalyst, drug design, spicery industry and life science and so on (Harkat et al., 2008). In the past few decades, a continuing attention has been drawn to the derivatives of the salicylaldehyde and their metal complexes for the investigation of luminescent properties which could be finely tuned by different substituent groups bonded to the phenolic ring (Lu et al., 2006; Duan et al., 2007; Zhang et al., 2007). In this paper, we report the X-ray structure of 3,5-dibromo-2-hydroxybenzaldehyde, (I).

The molecular structure of (I) is illustrated in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit, and both of them are essentially planar with the dihedral angle of 1.82 (6)°.

The C—H···O and O—H···O hydrogen bonding interactions contribute to the stabilizations of the molecular and crystal structures (Fig. 2 and Table 1). A layer packing structure is formed with the mean interlayer separation of 4.040 (8) and 3.776 (7) Å for two sets of molecules. The centeroid-to-centeriod separations between the adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å, respectively (Fig. 3), indicative of weak ππ stacking interactions.

Related literature top

For related compounds, see Harkat et al. (2008); Lu et al. (2006); Duan et al. (2007); Zhang et al. (2007).

Experimental top

The title compound was obtained as received. Single crystals suitable for X-ray diffraction measurement were formed after 5 days in ethyl acetate by slow evaporation at room temperature in air. Analysis calculated for C7H4O4Br2: C 30.04, H 1.44%. Found: C 30.08, H 1.39%. FT—IR (KBr pellets, cm-1): 3180(m), 3069(m), 1681(versus), 1662(versus), 1597(m), 1448(s), 1408(s), 1281(versus), 1198(s), 1151(m), 1134(m), 1098(m), 919(s), 877(s), 712(m) and 677(s).

Refinement top

The H atoms bonded with carbon atoms were placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of the intralayer intermolecular hydrogen-bond contacts among molecules in the title compound. Hydrogen bonds and Br–Br interactions are shown as dashed lines. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) - x + 1,-1/2 + y, 1/2 - z; (iii) x, -1 + y, z.]
[Figure 3] Fig. 3. A perspective view of the interlayer ππ stacking interactions together with the centroid–centroid contacts.
3,5-Dibromo-2-hydroxybenzaldehyde top
Crystal data top
C7H4Br2O2F(000) = 1056
Mr = 279.92Dx = 2.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1688 reflections
a = 16.474 (8) Åθ = 2.9–22.8°
b = 14.025 (10) ŵ = 9.52 mm1
c = 7.531 (7) ÅT = 291 K
β = 103.212 (2)°Block, yellow
V = 1694 (2) Å30.10 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3328 independent reflections
Radiation source: fine-focus sealed tube1670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2015
Tmin = 0.450, Tmax = 0.450k = 1716
8777 measured reflectionsl = 79
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max < 0.001
3328 reflectionsΔρmax = 0.67 e Å3
202 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (3)
Crystal data top
C7H4Br2O2V = 1694 (2) Å3
Mr = 279.92Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.474 (8) ŵ = 9.52 mm1
b = 14.025 (10) ÅT = 291 K
c = 7.531 (7) Å0.10 × 0.10 × 0.10 mm
β = 103.212 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1670 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.450Rint = 0.109
8777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.79Δρmax = 0.67 e Å3
3328 reflectionsΔρmin = 0.55 e Å3
202 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33358 (5)0.40384 (5)0.34454 (11)0.0666 (3)
Br20.32451 (4)0.00188 (5)0.34528 (10)0.0653 (3)
Br30.10268 (5)0.96790 (5)0.39100 (13)0.0750 (3)
Br40.12580 (4)0.67358 (6)0.46512 (11)0.0727 (3)
C10.5095 (4)0.1950 (4)0.3046 (8)0.0424 (15)
C20.4701 (4)0.2838 (4)0.3143 (8)0.0455 (16)
C30.3876 (4)0.2848 (5)0.3376 (8)0.0490 (17)
C40.3467 (4)0.2004 (5)0.3511 (9)0.0539 (18)
H40.29250.20160.36810.065*
C50.3858 (4)0.1130 (5)0.3396 (8)0.0504 (17)
C60.4670 (4)0.1100 (5)0.3151 (8)0.0488 (17)
H60.49270.05180.30590.059*
C70.5945 (4)0.1906 (5)0.2718 (9)0.0574 (19)
H70.61770.13060.26490.069*
C80.1215 (4)0.6721 (5)0.4036 (9)0.0494 (17)
C90.1402 (4)0.7692 (5)0.3912 (8)0.0456 (16)
C100.0787 (4)0.8359 (4)0.4063 (8)0.0477 (17)
C110.0001 (4)0.8089 (5)0.4295 (9)0.0542 (18)
H110.03930.85480.43950.065*
C120.0188 (4)0.7110 (5)0.4376 (9)0.0510 (18)
C130.0415 (4)0.6440 (5)0.4260 (8)0.0518 (17)
H130.02940.57950.43290.062*
C140.1838 (5)0.5982 (5)0.3899 (10)0.066 (2)
H140.16890.53490.40110.079*
O10.6364 (3)0.2604 (3)0.2531 (7)0.0702 (15)
O20.5114 (3)0.3678 (3)0.3080 (7)0.0655 (13)
H20.55870.35680.29600.098*
O30.2528 (3)0.6135 (3)0.3652 (8)0.0762 (15)
O40.2139 (2)0.8015 (3)0.3645 (7)0.0563 (12)
H4A0.24220.75630.34520.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0687 (5)0.0551 (5)0.0819 (6)0.0197 (4)0.0292 (4)0.0055 (4)
Br20.0571 (5)0.0538 (5)0.0879 (6)0.0152 (4)0.0226 (4)0.0017 (4)
Br30.0666 (5)0.0371 (5)0.1317 (8)0.0011 (4)0.0441 (5)0.0014 (5)
Br40.0484 (5)0.0764 (6)0.0966 (6)0.0142 (4)0.0233 (4)0.0000 (5)
C10.041 (4)0.039 (4)0.048 (4)0.005 (3)0.012 (3)0.000 (3)
C20.054 (4)0.034 (4)0.049 (4)0.005 (3)0.012 (3)0.004 (3)
C30.048 (4)0.051 (5)0.047 (4)0.010 (3)0.010 (3)0.001 (4)
C40.043 (4)0.060 (5)0.060 (4)0.003 (4)0.016 (3)0.004 (4)
C50.050 (4)0.049 (5)0.054 (4)0.007 (3)0.015 (3)0.008 (4)
C60.040 (4)0.046 (4)0.060 (5)0.003 (3)0.011 (3)0.001 (4)
C70.050 (4)0.046 (5)0.078 (5)0.008 (3)0.018 (4)0.006 (4)
C80.053 (4)0.041 (4)0.055 (4)0.004 (3)0.014 (3)0.003 (3)
C90.043 (4)0.046 (4)0.049 (4)0.001 (3)0.011 (3)0.001 (3)
C100.049 (4)0.041 (4)0.055 (4)0.002 (3)0.015 (3)0.001 (3)
C110.049 (4)0.056 (5)0.059 (4)0.002 (4)0.016 (3)0.005 (4)
C120.041 (4)0.063 (5)0.052 (4)0.001 (3)0.018 (3)0.007 (4)
C130.053 (4)0.042 (4)0.062 (5)0.010 (3)0.017 (3)0.005 (4)
C140.077 (6)0.035 (4)0.091 (6)0.013 (4)0.028 (5)0.011 (4)
O10.049 (3)0.052 (3)0.116 (4)0.002 (3)0.032 (3)0.010 (3)
O20.057 (3)0.045 (3)0.098 (4)0.001 (2)0.026 (3)0.004 (3)
O30.059 (3)0.049 (3)0.130 (5)0.013 (3)0.043 (3)0.013 (3)
O40.037 (3)0.041 (3)0.097 (4)0.001 (2)0.029 (2)0.002 (3)
Geometric parameters (Å, º) top
Br1—C31.898 (6)C7—H70.9300
Br2—C51.906 (6)C8—C91.404 (9)
Br3—C101.902 (6)C8—C131.424 (8)
Br4—C121.895 (6)C8—C141.479 (9)
C1—C61.394 (8)C9—O41.355 (7)
C1—C21.413 (8)C9—C101.402 (8)
C1—C71.477 (8)C10—C111.398 (8)
C2—O21.368 (7)C11—C121.412 (9)
C2—C31.410 (8)C11—H110.9300
C3—C41.377 (8)C12—C131.384 (8)
C4—C51.397 (8)C13—H130.9300
C4—H40.9300C14—O31.213 (8)
C5—C61.393 (8)C14—H140.9300
C6—H60.9300O2—H20.8200
C7—O11.225 (7)O4—H4A0.8200
C6—C1—C2120.5 (6)C9—C8—C14120.7 (6)
C6—C1—C7118.7 (6)C13—C8—C14119.4 (6)
C2—C1—C7120.7 (6)O4—C9—C10118.6 (6)
O2—C2—C3119.8 (6)O4—C9—C8123.5 (6)
O2—C2—C1121.3 (6)C10—C9—C8118.0 (6)
C3—C2—C1118.9 (6)C11—C10—C9122.4 (6)
C4—C3—C2120.2 (6)C11—C10—Br3118.9 (5)
C4—C3—Br1120.9 (5)C9—C10—Br3118.7 (5)
C2—C3—Br1118.9 (5)C10—C11—C12119.3 (6)
C3—C4—C5120.6 (6)C10—C11—H11120.4
C3—C4—H4119.7C12—C11—H11120.4
C5—C4—H4119.7C13—C12—C11119.3 (6)
C6—C5—C4120.3 (6)C13—C12—Br4121.2 (5)
C6—C5—Br2120.5 (5)C11—C12—Br4119.6 (5)
C4—C5—Br2119.1 (5)C12—C13—C8121.1 (6)
C5—C6—C1119.5 (6)C12—C13—H13119.4
C5—C6—H6120.2C8—C13—H13119.4
C1—C6—H6120.2O3—C14—C8125.1 (7)
O1—C7—C1124.5 (6)O3—C14—H14117.4
O1—C7—H7117.7C8—C14—H14117.4
C1—C7—H7117.7C2—O2—H2109.5
C9—C8—C13119.9 (6)C9—O4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.942.660 (6)146
O4—H4A···O30.822.012.713 (6)143
O4—H4A···O1i0.822.292.863 (6)128
C7—H7···O3ii0.932.553.122 (8)120
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H4Br2O2
Mr279.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)16.474 (8), 14.025 (10), 7.531 (7)
β (°) 103.212 (2)
V3)1694 (2)
Z8
Radiation typeMo Kα
µ (mm1)9.52
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.450, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
8777, 3328, 1670
Rint0.109
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 0.79
No. of reflections3328
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.55

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br1—C31.898 (6)C2—O21.368 (7)
Br2—C51.906 (6)C7—O11.225 (7)
Br3—C101.902 (6)C9—O41.355 (7)
Br4—C121.895 (6)C14—O31.213 (8)
O1—C7—C1124.5 (6)O3—C14—C8125.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.942.660 (6)146.2
O4—H4A···O30.822.012.713 (6)143.1
O4—H4A···O1i0.822.292.863 (6)127.8
C7—H7···O3ii0.932.553.122 (8)119.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

WH acknowledges the National Natural Science Found­ation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem. 72, 10283–10286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem. 73, 1620–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, Z. L., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds