metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­di­methano­lbis[4-(1H-tetra­zol-1-yl)benzoato]zinc(II) dihydrate

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: zsmchange@sina.com

(Received 15 March 2008; accepted 29 March 2008; online 4 April 2008)

In the title compound, [Zn(C8H5N4O2)2(CH3OH)2(H2O)2]·2H2O, the ZnII ion lies on an inversion centre and is coordinated by two O atoms from two 4-(tetra­zol-1-yl)benzoate ligands, two O atoms from two methanol mol­ecules and two O atoms from two water mol­ecules in a slightly distorted octa­hedral geometry. In addition, there are two uncoordinated water mol­ecules in the crystal structure. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Zou et al. (2005[Zou, R.-Q., Cai, L.-Z. & Guo, G.-C. (2005). J. Mol. Struct. 737, 125-129.]); Dinca et al. (2006[Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 16876-16883.]); Li et al. (2007[Li, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527-1529.]); Zhang & Du (2007[Zhang, S.-M. & Du, J.-L. (2007). Acta Cryst. E63, m3139.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2O

  • Mr = 579.84

  • Monoclinic, P 21 /c

  • a = 13.220 (3) Å

  • b = 7.1551 (14) Å

  • c = 12.636 (3) Å

  • β = 90.24 (3)°

  • V = 1195.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.810, Tmax = 0.844

  • 12254 measured reflections

  • 2746 independent reflections

  • 2359 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.04

  • 2746 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.0483 (14)
Zn1—O3 2.1078 (15)
Zn1—O1W 2.1342 (14)
O1—Zn1—O3 93.56 (6)
O1—Zn1—O1W 91.02 (6)
O3—Zn1—O1W 92.25 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2Wi 0.82 1.97 2.759 (2) 160
O2W—H2WB⋯O1Wii 0.77 (3) 2.07 (3) 2.831 (2) 175 (3)
O3—H3M⋯O2Wiii 0.75 (3) 1.99 (3) 2.726 (2) 167 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y, z-1; (iii) x, y-1, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination architectures formed from 1H-tetrazol and its derivatives have attracted wide attentions in recent years, due to not only their fascinating structures and topologies, but also their potential applications in luminescence, magnetism and gas storage (Dinca, et al., 2006; Li, et al., 2007). However, there are rare reports (Zou, et al., 2005) of the coordination systems using the benzoic acids with N-heterocycle as ligands. So we synthesized several coordination compounds by such ligands. And here we report the structure of title compound (I).

The structure of (I) consists of discrete neutral unit [Zn(C8H5N4O2)2(CH3OH)2(H2O)2], and two lattice water molecules (Fig. 1), atom Zn1 lies on an inversion centre and is coordinated by two O atoms from two 4-(tetrazol-1-yl) benzoate ligands, two O atoms from two methanol molecules and two O atoms from two water molecules in a distorted octahedral geometry.The metal ion of (I) is bonded to the carboxyl group of 4-(tetrazol-1-yl) benzoate, which is remarkably different from our previous reported compound that using the same ligand with N donor coordinating to metal ion (Zhang et al., 2007). The crystal stacking of (I) (Fig. 2) is stabilized by the intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Zou et al. (2005); Dinca et al. (2006); Li et al. (2007); Zhang & Du (2007).

Experimental top

A solution of Zn(NO3)2.6H2O (0.1 mmol) in water (5 ml) was added to a solution of 4-(tetrazol-1-yl) benzoic acid (38 mg, 0.2 mmol) and sodium hydroxide (8 mg, 0.2 mmol) in methanol (5 mL). The reaction mixture was stirred for 30 min and then filtered. Colourless crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation after two weeks [yield: 46%].

Refinement top

H atoms of C were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C,N). The H atoms of water was located in Fourier difference map and refined without restraint.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. [Symmetry code: (A) -x+1, -y, -z+2.]
[Figure 2] Fig. 2. A portion of the crystal stacking structure, showing the intermolecular O—H···O, hydrogen bonds as dashed lines.
Diaquadimethanolbis[4-(1H-tetrazol-1-yl)benzoato]zinc(II) dihydrate top
Crystal data top
[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2OF(000) = 600
Mr = 579.84Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11248 reflections
a = 13.220 (3) Åθ = 3.1–27.6°
b = 7.1551 (14) ŵ = 1.10 mm1
c = 12.636 (3) ÅT = 293 K
β = 90.24 (3)°Block, colourless
V = 1195.3 (4) Å30.20 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker P4
diffractometer
2746 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1717
Tmin = 0.810, Tmax = 0.844k = 99
12254 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5826P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2746 reflectionsΔρmax = 0.29 e Å3
188 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0228 (12)
Crystal data top
[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2OV = 1195.3 (4) Å3
Mr = 579.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.220 (3) ŵ = 1.10 mm1
b = 7.1551 (14) ÅT = 293 K
c = 12.636 (3) Å0.20 × 0.18 × 0.16 mm
β = 90.24 (3)°
Data collection top
Bruker P4
diffractometer
2746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2359 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.844Rint = 0.045
12254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
2746 reflectionsΔρmin = 0.23 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00001.00000.02298 (11)
O10.63696 (9)0.0452 (2)0.92928 (10)0.0313 (3)
O20.73211 (10)0.1468 (2)1.06367 (10)0.0399 (4)
C20.97854 (12)0.0991 (2)0.77039 (14)0.0231 (4)
N41.06694 (11)0.0940 (2)0.70586 (12)0.0243 (3)
C50.80990 (13)0.1028 (2)0.89760 (14)0.0228 (4)
N31.06465 (12)0.1453 (3)0.60316 (13)0.0339 (4)
C40.90418 (13)0.1480 (3)0.93867 (14)0.0259 (4)
H40.91040.17931.00980.031*
N11.21854 (12)0.0669 (3)0.64661 (14)0.0342 (4)
C70.88492 (14)0.0580 (3)0.72624 (15)0.0282 (4)
H70.87860.02940.65470.034*
C30.98863 (14)0.1470 (3)0.87560 (15)0.0274 (4)
H31.05160.17820.90350.033*
C80.71954 (13)0.0989 (3)0.96960 (14)0.0256 (4)
C11.16184 (14)0.0462 (3)0.72993 (16)0.0291 (4)
H11.18400.00470.79580.035*
C60.80137 (14)0.0608 (3)0.79125 (15)0.0279 (4)
H60.73800.03390.76290.033*
N21.15560 (13)0.1290 (3)0.56869 (14)0.0375 (4)
O30.54347 (11)0.2616 (2)1.06193 (13)0.0380 (4)
C90.63908 (16)0.3252 (3)1.0949 (2)0.0470 (6)
H9A0.69070.25791.05780.071*
H9B0.64510.45631.07990.071*
H9C0.64670.30501.16960.071*
O2W0.43377 (14)0.4734 (2)0.16558 (13)0.0340 (3)
O1W0.54904 (11)0.14327 (19)1.13919 (10)0.0289 (3)
H1WA0.54710.07181.18980.043*
H2WA0.378 (2)0.457 (4)0.156 (2)0.053 (9)*
H2WB0.463 (2)0.382 (4)0.156 (2)0.061 (10)*
H1WB0.612 (2)0.155 (4)1.121 (2)0.058 (8)*
H3M0.5060 (19)0.325 (4)1.088 (2)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01705 (16)0.02848 (18)0.02340 (17)0.00002 (12)0.00056 (11)0.00133 (13)
O10.0173 (6)0.0487 (9)0.0279 (7)0.0049 (6)0.0003 (5)0.0000 (6)
O20.0265 (7)0.0670 (11)0.0261 (7)0.0095 (7)0.0019 (6)0.0061 (7)
C20.0174 (9)0.0241 (9)0.0279 (9)0.0001 (7)0.0021 (7)0.0030 (7)
N40.0191 (7)0.0275 (8)0.0261 (8)0.0008 (6)0.0003 (6)0.0027 (7)
C50.0184 (8)0.0231 (9)0.0270 (9)0.0014 (7)0.0000 (7)0.0016 (7)
N30.0277 (9)0.0455 (10)0.0284 (9)0.0043 (7)0.0021 (7)0.0072 (8)
C40.0240 (9)0.0310 (10)0.0227 (9)0.0040 (7)0.0023 (7)0.0004 (8)
N10.0239 (9)0.0384 (9)0.0403 (10)0.0029 (7)0.0040 (7)0.0031 (8)
C70.0244 (9)0.0352 (10)0.0249 (9)0.0018 (8)0.0025 (8)0.0039 (8)
C30.0190 (9)0.0330 (10)0.0301 (10)0.0040 (7)0.0053 (7)0.0009 (8)
C80.0199 (9)0.0283 (10)0.0287 (10)0.0013 (7)0.0004 (7)0.0038 (8)
C10.0214 (9)0.0331 (11)0.0328 (10)0.0023 (7)0.0020 (8)0.0010 (8)
C60.0179 (9)0.0362 (10)0.0294 (10)0.0033 (7)0.0039 (7)0.0030 (8)
N20.0290 (9)0.0478 (11)0.0358 (10)0.0035 (8)0.0080 (7)0.0093 (8)
O30.0261 (7)0.0373 (9)0.0505 (9)0.0028 (7)0.0007 (7)0.0194 (7)
C90.0323 (12)0.0468 (14)0.0620 (15)0.0093 (10)0.0041 (11)0.0120 (12)
O2W0.0277 (8)0.0361 (9)0.0382 (8)0.0020 (7)0.0031 (7)0.0057 (7)
O1W0.0251 (7)0.0359 (8)0.0257 (7)0.0002 (6)0.0004 (6)0.0029 (6)
Geometric parameters (Å, º) top
Zn1—O12.0483 (14)C4—H40.9300
Zn1—O1i2.0483 (14)N1—C11.304 (3)
Zn1—O32.1078 (15)N1—N21.361 (2)
Zn1—O3i2.1078 (15)C7—C61.379 (3)
Zn1—O1Wi2.1342 (14)C7—H70.9300
Zn1—O1W2.1342 (14)C3—H30.9300
O1—C81.263 (2)C1—H10.9300
O2—C81.247 (2)C6—H60.9300
C2—C31.379 (3)O3—C91.405 (2)
C2—C71.387 (2)O3—H3M0.75 (3)
C2—N41.428 (2)C9—H9A0.9600
N4—C11.334 (2)C9—H9B0.9600
N4—N31.349 (2)C9—H9C0.9600
C5—C61.381 (3)O2W—H2WA0.75 (3)
C5—C41.386 (2)O2W—H2WB0.77 (3)
C5—C81.505 (2)O1W—H1WA0.8200
N3—N21.286 (2)O1W—H1WB0.87 (3)
C4—C31.375 (3)
O1—Zn1—O1i180.00 (3)C6—C7—C2118.22 (17)
O1—Zn1—O393.56 (6)C6—C7—H7120.9
O1i—Zn1—O386.44 (6)C2—C7—H7120.9
O1—Zn1—O3i86.44 (6)C4—C3—C2119.00 (17)
O1i—Zn1—O3i93.56 (6)C4—C3—H3120.5
O3—Zn1—O3i180.0C2—C3—H3120.5
O1—Zn1—O1Wi88.98 (6)O2—C8—O1125.41 (17)
O1i—Zn1—O1Wi91.02 (6)O2—C8—C5117.92 (16)
O3—Zn1—O1Wi87.75 (6)O1—C8—C5116.66 (16)
O3i—Zn1—O1Wi92.25 (6)N1—C1—N4109.28 (17)
O1—Zn1—O1W91.02 (6)N1—C1—H1125.4
O1i—Zn1—O1W88.98 (6)N4—C1—H1125.4
O3—Zn1—O1W92.25 (6)C7—C6—C5121.35 (17)
O3i—Zn1—O1W87.75 (6)C7—C6—H6119.3
O1Wi—Zn1—O1W180.0C5—C6—H6119.3
C8—O1—Zn1129.52 (12)N3—N2—N1110.75 (16)
C3—C2—C7121.54 (17)C9—O3—Zn1129.90 (14)
C3—C2—N4118.74 (16)C9—O3—H3M105 (2)
C7—C2—N4119.72 (16)Zn1—O3—H3M122 (2)
C1—N4—N3107.84 (15)O3—C9—H9A109.5
C1—N4—C2130.34 (16)O3—C9—H9B109.5
N3—N4—C2121.81 (15)H9A—C9—H9B109.5
C6—C5—C4118.98 (17)O3—C9—H9C109.5
C6—C5—C8121.50 (16)H9A—C9—H9C109.5
C4—C5—C8119.52 (16)H9B—C9—H9C109.5
N2—N3—N4106.50 (15)H2WA—O2W—H2WB109 (3)
C3—C4—C5120.86 (17)Zn1—O1W—H1WA109.5
C3—C4—H4119.6Zn1—O1W—H1WB96.5 (17)
C5—C4—H4119.6H1WA—O1W—H1WB107.7
C1—N1—N2105.63 (15)
O1i—Zn1—O1—C873 (100)Zn1—O1—C8—C5174.81 (12)
O3—Zn1—O1—C878.56 (17)C6—C5—C8—O2176.77 (19)
O3i—Zn1—O1—C8101.44 (17)C4—C5—C8—O23.7 (3)
O1Wi—Zn1—O1—C8166.24 (17)C6—C5—C8—O13.9 (3)
O1W—Zn1—O1—C813.76 (17)C4—C5—C8—O1175.56 (17)
C3—C2—N4—C133.9 (3)N2—N1—C1—N40.2 (2)
C7—C2—N4—C1146.7 (2)N3—N4—C1—N10.4 (2)
C3—C2—N4—N3144.73 (19)C2—N4—C1—N1178.39 (18)
C7—C2—N4—N334.7 (3)C2—C7—C6—C50.2 (3)
C1—N4—N3—N20.4 (2)C4—C5—C6—C71.8 (3)
C2—N4—N3—N2178.53 (17)C8—C5—C6—C7177.68 (18)
C6—C5—C4—C31.5 (3)N4—N3—N2—N10.2 (2)
C8—C5—C4—C3177.97 (17)C1—N1—N2—N30.0 (2)
C3—C2—C7—C61.8 (3)O1—Zn1—O3—C931.19 (19)
N4—C2—C7—C6178.77 (17)O1i—Zn1—O3—C9148.81 (19)
C5—C4—C3—C20.4 (3)O3i—Zn1—O3—C9165 (73)
C7—C2—C3—C42.1 (3)O1Wi—Zn1—O3—C9120.04 (19)
N4—C2—C3—C4178.49 (17)O1W—Zn1—O3—C959.96 (19)
Zn1—O1—C8—O24.4 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wii0.821.972.759 (2)160
O2W—H2WB···O1Wiii0.77 (3)2.07 (3)2.831 (2)175 (3)
O3—H3M···O2Wiv0.75 (3)1.99 (3)2.726 (2)167 (3)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y, z1; (iv) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2O
Mr579.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.220 (3), 7.1551 (14), 12.636 (3)
β (°) 90.24 (3)
V3)1195.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.810, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
12254, 2746, 2359
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.04
No. of reflections2746
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O12.0483 (14)Zn1—O1W2.1342 (14)
Zn1—O32.1078 (15)
O1—Zn1—O393.56 (6)O3—Zn1—O1W92.25 (6)
O1—Zn1—O1W91.02 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.821.972.759 (2)160.3
O2W—H2WB···O1Wii0.77 (3)2.07 (3)2.831 (2)175 (3)
O3—H3M···O2Wiii0.75 (3)1.99 (3)2.726 (2)167 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y, z1; (iii) x, y1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Tianjin, China (No. 07JCZDJC00500) for financial support.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 16876–16883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527–1529.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-M. & Du, J.-L. (2007). Acta Cryst. E63, m3139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, R.-Q., Cai, L.-Z. & Guo, G.-C. (2005). J. Mol. Struct. 737, 125–129.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds