organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­sulfon­yl)-2-methyl­naphtho[1,2-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 March 2008; accepted 4 April 2008; online 16 April 2008)

The title compound, C19H13ClO3S, was prepared by the oxidation of 3-(4-chloro­phenyl­sulfan­yl)-2-methyl­naphtho[1,2-b]furan with 3-chloro­peroxy­benzoic acid. The 4-chloro­phenyl ring makes a dihedral angle of 68.59 (5)° with the plane of the naphthofuran fragment. The crystal structure is stabilized by ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.635 (3) Å], and by C—H⋯π inter­actions between a methyl H atom and the furan ring of an adjacent mol­ecule. In addition, the crystal structure exhibits inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl­naphtho[1,2-b]furan derivatives, see: Choi et al. (2006[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3883-o3884.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o452.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13ClO3S

  • Mr = 356.80

  • Orthorhombic, P n a 21

  • a = 8.1155 (3) Å

  • b = 18.6014 (7) Å

  • c = 10.8319 (4) Å

  • V = 1635.18 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 (2) K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.857

  • 9543 measured reflections

  • 2611 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.06

  • 2611 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 728 Freidel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the O1/C12/C1/C2/C11 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19ACg3i 0.98 2.89 3.488 (3) 120
C8—H8⋯O2ii 0.95 2.48 3.428 (2) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to earlier communications on the synthesis and structure of 2-methylnaphtho[1,2-b]furan analogues, viz. 2-methyl-3-(methylsulfinyl) naphtho[1,2-b]furan (Choi et al., 2006) and 2-methyl-3-(phenylsulfonyl) naphtho[1,2-b]furan (Choi et al., 2008). Herein we report the molecular and crystal structure of the title compound, 3-(4-chlorophenylsulfonyl)-2-methylnaphtho[1,2-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the thirteen constituent atoms. The 4-chlorophenyl ring (C13-C18) makes a dihedral angle of 68.59 (5)° with the plane of the naphthofuran fragment. The crystal packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the benzene rings from the adjacent molecules. The Cg1···Cg2iii distance is 3.635 (3) Å (Cg1 and Cg2 are the centroids of the C5-C10 benzene ring and the C2/C3/C4/C5/C10/C11 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a methyl H atom and the furan ring of the naphthofuran unit, with a C19—H19A···Cg3i separation of 2.89 Å (Fig. 2 and Table 1; Cg3 is the centroid of the O1/C12/C1/C2/C11 furan ring; symmetry code as in Fig. 2). Additionally, intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2)

Related literature top

For the crystal structures of similar 2-methylnaphtho[1,2-b]furan derivatives, see: Choi et al. (2006, 2008).

Experimental top

3-Chloroperoxybenzoic acid (77%, 336 mg, 1.5 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2-methylnaphtho[1,2-b]furan (227 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2 : 1 v/v) to afford the title compound as a colourless solid [yield 82 %, m.p. 427-428 K; Rf = 0.69 (hexane-ethyl acetate, 2 : 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.91 (s, 3H), 7.45-7.64 (m, 4H), 7.75 (d, J = 8.44 Hz, 1H), 7.90-8.02 (m, 4H), 8.21 (d, J = 8.04 Hz, 1H); EI-MS 358 [M+2], 356 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···O interactions (dotted lines) in the structure of the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x-1/2, -y+1/2, z; (ii) -x+3/2, y+1/2, z+1/2.]
3-(4-Chlorophenylsulfonyl)-2-methylnaphtho[1,2-b]furan top
Crystal data top
C19H13ClO3SDx = 1.449 Mg m3
Mr = 356.80Melting point = 427–428 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7325 reflections
a = 8.1155 (3) Åθ = 2.2–28.2°
b = 18.6014 (7) ŵ = 0.38 mm1
c = 10.8319 (4) ÅT = 173 K
V = 1635.18 (11) Å3Block, colourless
Z = 40.60 × 0.40 × 0.40 mm
F(000) = 736
Data collection top
Bruker SMART CCD
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 2323
Tmin = 0.842, Tmax = 0.857l = 613
9543 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2762P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2611 reflectionsΔρmax = 0.26 e Å3
218 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 728 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C19H13ClO3SV = 1635.18 (11) Å3
Mr = 356.80Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.1155 (3) ŵ = 0.38 mm1
b = 18.6014 (7) ÅT = 173 K
c = 10.8319 (4) Å0.60 × 0.40 × 0.40 mm
Data collection top
Bruker SMART CCD
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2532 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.857Rint = 0.016
9543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.26 e Å3
S = 1.06Δρmin = 0.20 e Å3
2611 reflectionsAbsolute structure: Flack (1983), 728 Freidel pairs
218 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.09521 (6)0.07862 (3)0.70659 (5)0.04239 (14)
S0.49747 (5)0.08522 (2)0.47158 (5)0.02560 (10)
O10.55982 (14)0.27683 (6)0.61467 (14)0.0294 (3)
O20.64177 (14)0.04043 (6)0.48194 (16)0.0336 (3)
O30.44235 (16)0.10742 (7)0.35113 (14)0.0344 (3)
C10.5352 (2)0.16153 (8)0.55974 (18)0.0247 (3)
C20.62790 (19)0.16344 (9)0.67380 (18)0.0256 (4)
C30.7034 (2)0.11205 (9)0.75222 (19)0.0292 (4)
H30.69740.06210.73410.035*
C40.7847 (2)0.13619 (9)0.85426 (19)0.0305 (4)
H40.83590.10220.90730.037*
C50.7955 (2)0.21145 (10)0.88442 (19)0.0302 (4)
C60.8787 (2)0.23535 (11)0.9915 (2)0.0386 (5)
H60.92820.20141.04560.046*
C70.8882 (3)0.30743 (12)1.0175 (2)0.0449 (5)
H70.94420.32291.08980.054*
C80.8164 (3)0.35875 (11)0.9391 (2)0.0421 (5)
H80.82490.40840.95850.051*
C90.7342 (2)0.33765 (9)0.8346 (2)0.0347 (4)
H90.68580.37250.78170.042*
C100.7220 (2)0.26328 (9)0.80628 (19)0.0280 (4)
C110.63904 (19)0.23541 (8)0.7025 (2)0.0261 (3)
C120.4971 (2)0.23071 (9)0.5286 (2)0.0280 (4)
C130.3328 (2)0.03991 (8)0.54446 (17)0.0244 (3)
C140.3626 (2)0.01619 (9)0.6257 (2)0.0309 (4)
H140.47250.02960.64550.037*
C150.2315 (2)0.05239 (10)0.6775 (2)0.0347 (4)
H150.24950.09090.73350.042*
C160.0717 (2)0.03142 (10)0.64619 (18)0.0287 (4)
C170.0409 (2)0.02495 (10)0.5670 (2)0.0297 (4)
H170.06910.03850.54790.036*
C180.1726 (2)0.06139 (9)0.51591 (18)0.0268 (4)
H180.15430.10080.46180.032*
C190.4122 (2)0.26521 (10)0.4225 (2)0.0354 (4)
H19A0.34840.30650.45190.053*
H19B0.33790.23040.38350.053*
H19C0.49410.28140.36220.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0366 (2)0.0513 (3)0.0393 (3)0.01236 (19)0.0047 (2)0.0104 (2)
S0.02092 (18)0.02869 (18)0.0272 (2)0.00070 (14)0.00189 (17)0.0036 (2)
O10.0279 (6)0.0247 (5)0.0357 (7)0.0001 (5)0.0022 (6)0.0033 (6)
O20.0221 (5)0.0340 (6)0.0447 (9)0.0030 (5)0.0019 (6)0.0096 (7)
O30.0317 (6)0.0431 (7)0.0285 (7)0.0038 (6)0.0033 (6)0.0006 (6)
C10.0212 (7)0.0245 (7)0.0284 (9)0.0012 (6)0.0030 (7)0.0019 (7)
C20.0209 (7)0.0273 (7)0.0286 (10)0.0015 (6)0.0043 (7)0.0023 (7)
C30.0298 (8)0.0244 (8)0.0335 (10)0.0010 (6)0.0024 (8)0.0002 (7)
C40.0305 (8)0.0300 (8)0.0310 (10)0.0027 (7)0.0008 (8)0.0011 (8)
C50.0246 (8)0.0346 (9)0.0314 (10)0.0023 (6)0.0044 (8)0.0044 (8)
C60.0346 (9)0.0471 (11)0.0339 (12)0.0016 (8)0.0003 (9)0.0045 (9)
C70.0432 (11)0.0516 (11)0.0401 (13)0.0097 (9)0.0022 (10)0.0154 (11)
C80.0436 (11)0.0349 (9)0.0478 (14)0.0115 (8)0.0076 (10)0.0133 (9)
C90.0347 (9)0.0287 (8)0.0406 (11)0.0054 (7)0.0085 (9)0.0035 (8)
C100.0243 (7)0.0272 (8)0.0326 (10)0.0025 (6)0.0054 (8)0.0048 (7)
C110.0219 (7)0.0250 (7)0.0315 (9)0.0004 (6)0.0052 (8)0.0016 (8)
C120.0208 (7)0.0301 (8)0.0330 (10)0.0023 (6)0.0029 (7)0.0009 (8)
C130.0227 (7)0.0257 (7)0.0247 (9)0.0012 (6)0.0003 (7)0.0036 (7)
C140.0272 (8)0.0316 (8)0.0338 (10)0.0005 (7)0.0081 (8)0.0026 (8)
C150.0373 (9)0.0339 (9)0.0330 (11)0.0025 (7)0.0074 (8)0.0083 (8)
C160.0281 (8)0.0336 (8)0.0244 (10)0.0071 (7)0.0010 (8)0.0012 (7)
C170.0235 (8)0.0358 (9)0.0299 (10)0.0016 (6)0.0007 (8)0.0011 (8)
C180.0268 (8)0.0277 (7)0.0261 (9)0.0036 (6)0.0008 (7)0.0001 (7)
C190.0321 (9)0.0337 (9)0.0403 (12)0.0032 (7)0.0025 (9)0.0059 (8)
Geometric parameters (Å, º) top
Cl—C161.7416 (17)C7—H70.9500
S—O31.4397 (16)C8—C91.371 (3)
S—O21.4416 (12)C8—H80.9500
S—C11.7379 (17)C9—C101.421 (2)
S—C131.7663 (17)C9—H90.9500
O1—C121.365 (2)C10—C111.409 (3)
O1—C111.383 (2)C12—C191.485 (3)
C1—C121.366 (2)C13—C141.386 (3)
C1—C21.447 (3)C13—C181.394 (2)
C2—C111.377 (2)C14—C151.379 (3)
C2—C31.418 (3)C14—H140.9500
C3—C41.363 (3)C15—C161.396 (3)
C3—H30.9500C15—H150.9500
C4—C51.440 (2)C16—C171.378 (3)
C4—H40.9500C17—C181.382 (3)
C5—C61.414 (3)C17—H170.9500
C5—C101.415 (3)C18—H180.9500
C6—C71.372 (3)C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—C81.404 (3)C19—H19C0.9800
O3—S—O2119.25 (10)C11—C10—C5115.35 (15)
O3—S—C1108.57 (8)C11—C10—C9124.35 (18)
O2—S—C1106.63 (8)C5—C10—C9120.30 (18)
O3—S—C13107.87 (8)C2—C11—O1110.85 (17)
O2—S—C13107.70 (8)C2—C11—C10124.68 (17)
C1—S—C13106.11 (8)O1—C11—C10124.47 (14)
C12—O1—C11107.04 (13)O1—C12—C1109.81 (17)
C12—C1—C2107.78 (16)O1—C12—C19115.45 (14)
C12—C1—S126.43 (15)C1—C12—C19134.68 (18)
C2—C1—S125.51 (13)C14—C13—C18121.29 (16)
C11—C2—C3119.46 (17)C14—C13—S120.70 (13)
C11—C2—C1104.52 (15)C18—C13—S117.99 (13)
C3—C2—C1136.01 (16)C15—C14—C13119.40 (16)
C4—C3—C2118.21 (16)C15—C14—H14120.3
C4—C3—H3120.9C13—C14—H14120.3
C2—C3—H3120.9C14—C15—C16118.81 (17)
C3—C4—C5122.26 (18)C14—C15—H15120.6
C3—C4—H4118.9C16—C15—H15120.6
C5—C4—H4118.9C17—C16—C15122.18 (16)
C6—C5—C10118.56 (17)C17—C16—Cl118.45 (14)
C6—C5—C4121.40 (19)C15—C16—Cl119.36 (15)
C10—C5—C4120.04 (18)C16—C17—C18118.83 (16)
C7—C6—C5120.1 (2)C16—C17—H17120.6
C7—C6—H6119.9C18—C17—H17120.6
C5—C6—H6119.9C17—C18—C13119.47 (16)
C6—C7—C8121.1 (2)C17—C18—H18120.3
C6—C7—H7119.4C13—C18—H18120.3
C8—C7—H7119.4C12—C19—H19A109.5
C9—C8—C7120.42 (18)C12—C19—H19B109.5
C9—C8—H8119.8H19A—C19—H19B109.5
C7—C8—H8119.8C12—C19—H19C109.5
C8—C9—C10119.4 (2)H19A—C19—H19C109.5
C8—C9—H9120.3H19B—C19—H19C109.5
C10—C9—H9120.3
O3—S—C1—C128.85 (18)C1—C2—C11—C10178.97 (16)
O2—S—C1—C12138.51 (16)C12—O1—C11—C20.01 (19)
C13—S—C1—C12106.87 (16)C12—O1—C11—C10179.12 (15)
O3—S—C1—C2164.41 (14)C5—C10—C11—C20.7 (2)
O2—S—C1—C234.74 (17)C9—C10—C11—C2179.39 (17)
C13—S—C1—C279.88 (16)C5—C10—C11—O1179.69 (16)
C12—C1—C2—C110.25 (19)C9—C10—C11—O10.4 (3)
S—C1—C2—C11174.06 (13)C11—O1—C12—C10.16 (19)
C12—C1—C2—C3179.16 (19)C11—O1—C12—C19177.64 (15)
S—C1—C2—C34.9 (3)C2—C1—C12—O10.26 (19)
C11—C2—C3—C40.1 (2)S—C1—C12—O1173.98 (12)
C1—C2—C3—C4178.91 (18)C2—C1—C12—C19177.06 (19)
C2—C3—C4—C50.2 (3)S—C1—C12—C192.8 (3)
C3—C4—C5—C6179.21 (18)O3—S—C13—C14147.32 (16)
C3—C4—C5—C100.7 (3)O2—S—C13—C1417.39 (18)
C10—C5—C6—C70.5 (3)C1—S—C13—C1496.49 (16)
C4—C5—C6—C7179.54 (19)O3—S—C13—C1831.49 (16)
C5—C6—C7—C80.1 (3)O2—S—C13—C18161.42 (14)
C6—C7—C8—C90.4 (3)C1—S—C13—C1884.70 (16)
C7—C8—C9—C100.0 (3)C18—C13—C14—C151.3 (3)
C6—C5—C10—C11179.00 (16)S—C13—C14—C15177.48 (16)
C4—C5—C10—C110.9 (2)C13—C14—C15—C160.1 (3)
C6—C5—C10—C90.9 (3)C14—C15—C16—C171.1 (3)
C4—C5—C10—C9179.14 (17)C14—C15—C16—Cl177.77 (16)
C8—C9—C10—C11179.23 (17)C15—C16—C17—C180.7 (3)
C8—C9—C10—C50.7 (3)Cl—C16—C17—C18178.19 (15)
C3—C2—C11—O1179.29 (14)C16—C17—C18—C130.7 (3)
C1—C2—C11—O10.16 (19)C14—C13—C18—C171.7 (3)
C3—C2—C11—C100.2 (3)S—C13—C18—C17177.10 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg3i0.982.893.488 (3)120
C8—H8···O2ii0.952.483.428 (2)173
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13ClO3S
Mr356.80
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)8.1155 (3), 18.6014 (7), 10.8319 (4)
V3)1635.18 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.842, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
9543, 2611, 2532
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.06
No. of reflections2611
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20
Absolute structureFlack (1983), 728 Freidel pairs
Absolute structure parameter0.01 (5)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg3i0.982.893.488 (3)120.4
C8—H8···O2ii0.952.483.428 (2)172.8
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3883–o3884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds