organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: hongxiuzhi@yahoo.com.cn

(Received 29 March 2008; accepted 8 April 2008; online 16 April 2008)

In the title compound, C17H12O4, the chromene unit is approximately planar, the maximum deviation from the mean plane being 0.0166 Å. The attached phenyl ring makes a dihedral angle of 53.2 (1)° with the fused ring system. The packing of the mol­ecules in the crystal structure is governed by C—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Uneyama et al. (1985[Uneyama, K., Masatsugu, Y. & Torll, S. (1985). Bull. Chem. Soc. Jpn, 58, 2361-2365.]); Ghoneim et al. (2007[Ghoneim, M. M., El-Attar, M. A. & Razeq, S. A. (2007). Cent. Eur. J. Chem. 5, 496-507.]); Da Re (1960[Da Re, P. (1960). US Patent 2921070.], 1968[Da Re, P. (1968). US Patent 3350411.]); Sianesi (1972[Sianesi, E. (1972). Ger. Patent 2059296.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O4

  • Mr = 280.27

  • Triclinic, [P \overline 1]

  • a = 7.2760 (8) Å

  • b = 9.6551 (10) Å

  • c = 11.3095 (12) Å

  • α = 65.965 (2)°

  • β = 79.748 (2)°

  • γ = 68.286 (2)°

  • V = 673.78 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.35 × 0.27 × 0.18 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]) Tmin = 0.969, Tmax = 0.989

  • 3569 measured reflections

  • 2354 independent reflections

  • 2086 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.10

  • 2354 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.86 2.615 (3) 154
C3—H3⋯O1 0.93 2.35 2.683 (3) 101
C14—H14⋯O2ii 0.93 2.57 3.347 (4) 141
C16—H16⋯O2iii 0.93 2.57 3.473 (5) 163
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound, 3-Methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid, is the key intermediate of flavoxate hydrochloride (Uneyama et al., 1985). The flavoxate hydrochloride is a smooth muscle antispasmodic, especially on the urogenital tract (Ghoneim et al., 2007). We report here the crystal structure of the title compound.

The 1-benzopyran unit is approximately planar, with a maximum deviation from the mean plane being 0.0166 A. The attached phenyl ring makes a dihedral angle of 53.2 (1)° with the fused ring system.The packing of the molecules in the crystal structure is mainly governed by C—H—Oπ hydrogen bonding interactions.

Related literature top

For related literature, see: Uneyama et al. (1985); Ghoneim et al. (2007); Da Re (1960, 1968); Sianesi (1972).

Experimental top

To a solution of 8-formyl-3-methyl-2-phenyl-4H-chromen-4-one (4 g, 15 mmol) in 2-butanone heated to 363–368 K, 31% of H2O2 (50 ml) was added four times at every 10 h intervals. After being stirred for 10 h, H2O2 was quenched with NaHSO3. The reaction mixture was acidified with 10% HCl and extracted with AcOEt. The extracts were concentrated in vacuo. The residue was dissolved in sat. NaHCO3 and extracted with AcOEt. The aqueous layer was acidified with 10% HCl and extracted with AcOEt. The extracts were dried with Na2SO4 and concentrated in vacuo. The residue was recrystallized from ethanol to give the title compound in a yield of 81%. m.p. 500.6–501.2 K. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (2:1 v/v) at room temperature.

Refinement top

All H atoms were placed geometrically at the distances of 0.93–0.96 Å for C—H and 0.826 Å for O—H and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability ellipsoids for the non-hydrogen atoms and the atom-labelling scheme.
3-Methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid top
Crystal data top
C17H12O4Z = 2
Mr = 280.27F(000) = 292
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2760 (8) ÅCell parameters from 1477 reflections
b = 9.6551 (10) Åθ = 2.5–27.7°
c = 11.3095 (12) ŵ = 0.10 mm1
α = 65.965 (2)°T = 298 K
β = 79.748 (2)°Block, colourless
γ = 68.286 (2)°0.35 × 0.27 × 0.18 mm
V = 673.78 (12) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2354 independent reflections
Radiation source: fine-focus sealed tube2086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.969, Tmax = 0.989k = 1111
3569 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2396P]
where P = (Fo2 + 2Fc2)/3
2354 reflections(Δ/σ)max = 0.004
192 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H12O4γ = 68.286 (2)°
Mr = 280.27V = 673.78 (12) Å3
Triclinic, P1Z = 2
a = 7.2760 (8) ÅMo Kα radiation
b = 9.6551 (10) ŵ = 0.10 mm1
c = 11.3095 (12) ÅT = 298 K
α = 65.965 (2)°0.35 × 0.27 × 0.18 mm
β = 79.748 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
2354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2086 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.989Rint = 0.015
3569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
2354 reflectionsΔρmin = 0.25 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2307 (3)0.48247 (18)0.52007 (15)0.0620 (5)
H10.25210.56810.48420.093*
O20.3009 (3)0.4730 (2)0.32507 (15)0.0690 (6)
O30.2390 (2)0.22602 (15)0.30232 (13)0.0398 (4)
O40.2514 (3)0.23584 (17)0.47596 (17)0.0595 (5)
C10.2644 (3)0.4115 (2)0.43715 (19)0.0380 (5)
C20.2526 (3)0.2451 (2)0.50288 (18)0.0351 (5)
C30.2552 (3)0.1725 (2)0.63616 (19)0.0409 (5)
H30.25580.23070.68440.049*
C40.2568 (3)0.0150 (2)0.7004 (2)0.0451 (5)
H40.25970.03110.79030.054*
C50.2543 (3)0.0720 (2)0.6318 (2)0.0432 (5)
H50.25620.17760.67500.052*
C60.2490 (3)0.0033 (2)0.49658 (19)0.0368 (5)
C70.2471 (3)0.1545 (2)0.43312 (18)0.0337 (4)
C80.2394 (3)0.1420 (2)0.2298 (2)0.0396 (5)
C90.2489 (3)0.0139 (2)0.2816 (2)0.0443 (5)
C100.2678 (4)0.1097 (3)0.2009 (3)0.0621 (7)
H10A0.14330.12340.20210.093*
H10B0.36720.21310.23570.093*
H10C0.30500.05390.11340.093*
C110.2487 (3)0.0952 (2)0.4206 (2)0.0422 (5)
C120.2342 (3)0.2459 (2)0.0909 (2)0.0466 (5)
C130.3714 (4)0.3244 (3)0.0379 (2)0.0570 (6)
H130.46750.31110.08960.068*
C140.3666 (5)0.4226 (3)0.0916 (3)0.0748 (8)
H140.46070.47380.12700.090*
C150.2250 (6)0.4448 (4)0.1677 (3)0.0846 (10)
H150.22330.51030.25500.102*
C160.0850 (6)0.3712 (4)0.1163 (3)0.0834 (10)
H160.01390.38930.16810.100*
C170.0903 (4)0.2697 (3)0.0127 (2)0.0647 (7)
H170.00300.21760.04690.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1144 (15)0.0418 (9)0.0473 (9)0.0423 (10)0.0084 (9)0.0233 (7)
O20.1327 (17)0.0529 (10)0.0399 (9)0.0575 (11)0.0093 (9)0.0161 (8)
O30.0565 (9)0.0317 (7)0.0375 (8)0.0167 (6)0.0028 (6)0.0168 (6)
O40.0792 (12)0.0333 (8)0.0753 (12)0.0259 (8)0.0028 (9)0.0224 (8)
C10.0499 (12)0.0313 (10)0.0385 (12)0.0178 (9)0.0023 (9)0.0141 (9)
C20.0380 (11)0.0307 (10)0.0391 (11)0.0123 (8)0.0004 (8)0.0153 (8)
C30.0480 (12)0.0370 (11)0.0402 (12)0.0140 (9)0.0002 (9)0.0174 (9)
C40.0543 (13)0.0380 (11)0.0372 (11)0.0164 (10)0.0012 (9)0.0087 (9)
C50.0482 (12)0.0269 (10)0.0497 (13)0.0150 (9)0.0008 (9)0.0086 (9)
C60.0342 (10)0.0296 (10)0.0494 (12)0.0119 (8)0.0000 (8)0.0169 (9)
C70.0355 (10)0.0298 (9)0.0364 (11)0.0115 (8)0.0009 (8)0.0133 (8)
C80.0399 (11)0.0419 (11)0.0452 (12)0.0128 (9)0.0004 (9)0.0250 (9)
C90.0420 (12)0.0424 (11)0.0598 (14)0.0149 (9)0.0019 (10)0.0307 (10)
C100.0734 (17)0.0547 (14)0.0766 (18)0.0214 (13)0.0020 (13)0.0439 (13)
C110.0400 (11)0.0326 (10)0.0600 (14)0.0138 (9)0.0007 (9)0.0224 (10)
C120.0565 (13)0.0405 (11)0.0449 (12)0.0065 (10)0.0022 (10)0.0262 (10)
C130.0740 (17)0.0481 (13)0.0502 (14)0.0209 (12)0.0011 (12)0.0203 (11)
C140.113 (2)0.0549 (15)0.0545 (16)0.0303 (16)0.0168 (16)0.0239 (13)
C150.142 (3)0.0570 (17)0.0416 (15)0.0107 (19)0.0024 (18)0.0259 (13)
C160.110 (3)0.078 (2)0.0595 (18)0.0011 (18)0.0324 (17)0.0400 (16)
C170.0720 (17)0.0719 (17)0.0586 (16)0.0143 (14)0.0126 (13)0.0368 (13)
Geometric parameters (Å, º) top
O1—C11.314 (2)C8—C121.478 (3)
O1—H10.8200C9—C111.443 (3)
O2—C11.189 (2)C9—C101.502 (3)
O3—C71.355 (2)C10—H10A0.9600
O3—C81.367 (2)C10—H10B0.9600
O4—C111.236 (2)C10—H10C0.9600
C1—C21.499 (3)C12—C131.381 (3)
C2—C31.380 (3)C12—C171.385 (3)
C2—C71.410 (3)C13—C141.381 (4)
C3—C41.390 (3)C13—H130.9300
C3—H30.9300C14—C151.360 (5)
C4—C51.362 (3)C14—H140.9300
C4—H40.9300C15—C161.366 (5)
C5—C61.398 (3)C15—H150.9300
C5—H50.9300C16—C171.385 (4)
C6—C71.391 (3)C16—H160.9300
C6—C111.466 (3)C17—H170.9300
C8—C91.354 (3)
C1—O1—H1109.5C11—C9—C10117.80 (19)
C7—O3—C8120.38 (15)C9—C10—H10A109.5
O2—C1—O1123.45 (17)C9—C10—H10B109.5
O2—C1—C2125.38 (18)H10A—C10—H10B109.5
O1—C1—C2111.17 (17)C9—C10—H10C109.5
C3—C2—C7117.48 (17)H10A—C10—H10C109.5
C3—C2—C1120.09 (17)H10B—C10—H10C109.5
C7—C2—C1122.37 (17)O4—C11—C9123.31 (19)
C2—C3—C4121.87 (19)O4—C11—C6120.0 (2)
C2—C3—H3119.1C9—C11—C6116.63 (17)
C4—C3—H3119.1C13—C12—C17118.9 (2)
C5—C4—C3120.06 (19)C13—C12—C8119.9 (2)
C5—C4—H4120.0C17—C12—C8121.1 (2)
C3—C4—H4120.0C12—C13—C14120.3 (3)
C4—C5—C6120.32 (17)C12—C13—H13119.9
C4—C5—H5119.8C14—C13—H13119.9
C6—C5—H5119.8C15—C14—C13120.3 (3)
C7—C6—C5119.23 (17)C15—C14—H14119.8
C7—C6—C11119.48 (18)C13—C14—H14119.8
C5—C6—C11121.28 (17)C14—C15—C16120.2 (3)
O3—C7—C6120.94 (17)C14—C15—H15119.9
O3—C7—C2118.04 (16)C16—C15—H15119.9
C6—C7—C2121.02 (18)C15—C16—C17120.1 (3)
C9—C8—O3123.39 (19)C15—C16—H16119.9
C9—C8—C12127.06 (18)C17—C16—H16119.9
O3—C8—C12109.53 (16)C12—C17—C16120.1 (3)
C8—C9—C11119.07 (18)C12—C17—H17120.0
C8—C9—C10123.1 (2)C16—C17—H17120.0
O2—C1—C2—C3164.8 (2)C12—C8—C9—C11178.8 (2)
O1—C1—C2—C314.5 (3)O3—C8—C9—C10174.3 (2)
O2—C1—C2—C712.4 (3)C12—C8—C9—C103.7 (4)
O1—C1—C2—C7168.23 (18)C8—C9—C11—O4177.9 (2)
C7—C2—C3—C41.4 (3)C10—C9—C11—O44.4 (3)
C1—C2—C3—C4176.0 (2)C8—C9—C11—C63.3 (3)
C2—C3—C4—C50.5 (3)C10—C9—C11—C6174.40 (19)
C3—C4—C5—C60.3 (3)C7—C6—C11—O4179.63 (19)
C4—C5—C6—C70.2 (3)C5—C6—C11—O40.6 (3)
C4—C5—C6—C11179.2 (2)C7—C6—C11—C90.8 (3)
C8—O3—C7—C62.2 (3)C5—C6—C11—C9178.21 (18)
C8—O3—C7—C2178.03 (17)C9—C8—C12—C13125.6 (2)
C5—C6—C7—O3179.03 (17)O3—C8—C12—C1352.7 (3)
C11—C6—C7—O31.9 (3)C9—C8—C12—C1756.1 (3)
C5—C6—C7—C20.7 (3)O3—C8—C12—C17125.6 (2)
C11—C6—C7—C2178.32 (17)C17—C12—C13—C141.2 (3)
C3—C2—C7—O3178.24 (17)C8—C12—C13—C14179.5 (2)
C1—C2—C7—O34.5 (3)C12—C13—C14—C151.0 (4)
C3—C2—C7—C61.5 (3)C13—C14—C15—C160.6 (4)
C1—C2—C7—C6175.80 (18)C14—C15—C16—C171.9 (4)
C7—O3—C8—C90.4 (3)C13—C12—C17—C160.1 (3)
C7—O3—C8—C12178.76 (16)C8—C12—C17—C16178.2 (2)
O3—C8—C9—C113.2 (3)C15—C16—C17—C121.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.862.615 (3)154
C3—H3···O10.932.352.683 (3)101
C14—H14···O2ii0.932.573.347 (4)141
C16—H16···O2iii0.932.573.473 (5)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H12O4
Mr280.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2760 (8), 9.6551 (10), 11.3095 (12)
α, β, γ (°)65.965 (2), 79.748 (2), 68.286 (2)
V3)673.78 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.27 × 0.18
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.969, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3569, 2354, 2086
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.144, 1.10
No. of reflections2354
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.862.615 (3)154
C3—H3···O10.932.352.683 (3)101
C14—H14···O2ii0.932.573.347 (4)141
C16—H16···O2iii0.932.573.473 (5)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Materia Medica Institute of Taizhou University for supporting this work.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationDa Re, P. (1960). US Patent 2921070.  Google Scholar
First citationDa Re, P. (1968). US Patent 3350411.  Google Scholar
First citationGhoneim, M. M., El-Attar, M. A. & Razeq, S. A. (2007). Cent. Eur. J. Chem. 5, 496–507.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSianesi, E. (1972). Ger. Patent 2059296.  Google Scholar
First citationUneyama, K., Masatsugu, Y. & Torll, S. (1985). Bull. Chem. Soc. Jpn, 58, 2361–2365.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds