organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2,4-Di­methyl­phen­yl)carbamo­thio­yl]-2-methyl­benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43650 Bangi Selangor, Malaysia, bHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Chemistry, Universiti Malaysia Terengganu, Manngabang Telipot, Terengganu, Malaysia
*Correspondence e-mail: sammer_yousuf@yahoo.com

(Received 4 April 2008; accepted 7 April 2008; online 10 April 2008)

The title compound, C17H18N2OS, adopts a transcis geometry of the thio­urea group which is stabilized by intra­molecular hydrogen bonds between the O atom of the carbonyl group and the H atom of the thio­amide group. A C—H⋯S intramolecular hydrogen bond is also present. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds to form centrosymmetric dimers.

Related literature

For the crystal structure of 1-(2,3-dimethyl­phen­yl)-3-(2-methyl­benzo­yl)thio­urea, which is isomeric with the title compound, see: Khawar Rauf et al. (2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256-o1257.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2OS

  • Mr = 298.39

  • Triclinic, [P \overline 1]

  • a = 6.2569 (15) Å

  • b = 9.862 (2) Å

  • c = 13.986 (3) Å

  • α = 69.461 (4)°

  • β = 86.199 (4)°

  • γ = 75.206 (4)°

  • V = 781.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 (2) K

  • 0.27 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.982

  • 7817 measured reflections

  • 2904 independent reflections

  • 2069 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.02

  • 2904 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.03 2.706 135
C17—H17B⋯S1 0.96 2.80 3.496 130
N1—H1⋯S1i 0.86 2.57 3.372 155
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), is isomeric to the previously reported 1-(2,3-dimethylphenyl)-3-(2-methylbenzoyl)thiourea (II), (Khawar Rauf et al., 2007) with the difference that the 2,3-dimethylphenyl ring is replaced by 2,4-dimethylphenyl (Fig.1). The bond lengths and angles are in normal range (Allen et al., 1987) and in agreement with those in (II). The central thiourea moiety (S1/N1/N2/C9), 2-methylbenzoyl (C1—C8), and 2,3-dimethylphenyl (C10—C15) rings are each planar with a maximum deviation of 0.040 (2)Å for C8 atom from the least square plane. The dihedral angles between the thiourea moiety and the 2-methylbenzoyl and 2,3-dimethylphenyl rings are 52.96 (11) and 70.34 (12)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by N2—H2···O1 and C17—H17B···S1 intramolecular hydrogen bonds. In the crystal structure, the molecules are linked to form dimers by the N1—H1···S1 intermolecular hydrogen bond (symmtery codes as in Table 2) and arranged parallel to c axis (Fig.2).

Related literature top

For the crystal structure of 1-(2,3-dimethylphenyl)-3-(2-methylbenzoyl)thiourea which is isomeric to the title compound, see: Khawar Rauf et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 2-methylbenzoyl chloride (9.720 g, 0.025 mol) with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2,3-dimethyl aniline (3.025 g, 0.025 mol) in 40 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The colourless crystals obtained after a few days, was found suitable for X-ray investigations. The yield was 85% with melting point 413.2–415.7 K.

Refinement top

H atoms on the C and N parent atoms were positioned geomatrically, with C—H = 0.96, 0.93 and N—H = 0.86Å

and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH and NH) and 1.5Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular sStructure of (I) with displacement ellipsoids drawn at 50% probability level. The dashed lines indicates the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown by dashed lines.
N-[(2,4-Dimethylphenyl)carbamothioyl]-2-methylbenzamide top
Crystal data top
C17H18N2OSZ = 2
Mr = 298.39F(000) = 316
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2569 (15) ÅCell parameters from 1377 reflections
b = 9.862 (2) Åθ = 1.5–25.5°
c = 13.986 (3) ŵ = 0.21 mm1
α = 69.461 (4)°T = 298 K
β = 86.199 (4)°Slab, colourless
γ = 75.206 (4)°0.27 × 0.18 × 0.09 mm
V = 781.1 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.5°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1111
Tmin = 0.946, Tmax = 0.982l = 1616
7817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1084P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H18N2OSγ = 75.206 (4)°
Mr = 298.39V = 781.1 (3) Å3
Triclinic, P1Z = 2
a = 6.2569 (15) ÅMo Kα radiation
b = 9.862 (2) ŵ = 0.21 mm1
c = 13.986 (3) ÅT = 298 K
α = 69.461 (4)°0.27 × 0.18 × 0.09 mm
β = 86.199 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2069 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.982Rint = 0.034
7817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2904 reflectionsΔρmin = 0.17 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00124 (10)0.51524 (6)0.34145 (4)0.0441 (2)
O10.2196 (3)0.02671 (18)0.54848 (13)0.0630 (5)
N10.1412 (3)0.27939 (19)0.50519 (13)0.0374 (4)
H10.13410.34730.53130.045*
N20.0595 (3)0.22917 (19)0.36460 (13)0.0394 (5)
H20.08830.13750.40480.047*
C10.2131 (4)0.0521 (3)0.75752 (18)0.0519 (6)
H1A0.10420.00510.75370.062*
C20.2787 (5)0.0473 (3)0.85127 (19)0.0644 (8)
H2A0.21200.00070.91050.077*
C30.4424 (5)0.1138 (3)0.8562 (2)0.0639 (8)
H30.48640.11120.91920.077*
C40.5414 (4)0.1835 (3)0.77013 (19)0.0541 (7)
H40.65430.22640.77540.065*
C50.4783 (4)0.1923 (3)0.67457 (17)0.0430 (6)
C60.3089 (3)0.1265 (2)0.66943 (16)0.0367 (5)
C70.5968 (5)0.2679 (4)0.5822 (2)0.0696 (8)
H7A0.50200.36250.54330.104*
H7B0.63550.20600.54070.104*
H7C0.72860.28350.60340.104*
C80.2225 (4)0.1361 (2)0.56942 (17)0.0393 (5)
C90.0679 (3)0.3321 (2)0.40383 (15)0.0334 (5)
C100.0056 (4)0.2603 (2)0.25979 (16)0.0366 (5)
C110.1738 (4)0.2193 (3)0.19879 (18)0.0473 (6)
H110.31670.17400.22590.057*
C120.1297 (4)0.2456 (3)0.09727 (19)0.0538 (7)
H120.24400.21810.05650.065*
C130.0810 (4)0.3119 (3)0.05573 (17)0.0499 (6)
C140.2460 (4)0.3481 (3)0.11976 (17)0.0463 (6)
H140.38950.39100.09290.056*
C150.2098 (4)0.3239 (2)0.22153 (16)0.0394 (5)
C160.1300 (5)0.3419 (3)0.05520 (19)0.0748 (9)
H16A0.09530.43380.09680.112*
H16B0.28390.34940.06430.112*
H16C0.04200.26140.07500.112*
C170.3997 (4)0.3598 (3)0.28774 (19)0.0564 (7)
H17A0.53620.39170.24930.085*
H17B0.38280.43830.30990.085*
H17C0.40150.27230.34620.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0630 (4)0.0333 (3)0.0343 (3)0.0086 (3)0.0061 (3)0.0108 (2)
O10.1010 (14)0.0356 (9)0.0529 (11)0.0138 (9)0.0262 (10)0.0130 (8)
N10.0502 (11)0.0303 (9)0.0333 (10)0.0070 (8)0.0101 (8)0.0128 (8)
N20.0524 (12)0.0300 (9)0.0347 (10)0.0063 (8)0.0104 (8)0.0107 (8)
C10.0657 (16)0.0445 (14)0.0448 (15)0.0180 (12)0.0029 (12)0.0108 (12)
C20.092 (2)0.0591 (17)0.0327 (14)0.0153 (16)0.0040 (14)0.0072 (13)
C30.089 (2)0.0587 (17)0.0398 (16)0.0019 (16)0.0202 (15)0.0193 (13)
C40.0576 (16)0.0573 (16)0.0483 (16)0.0066 (13)0.0184 (13)0.0214 (13)
C50.0421 (13)0.0453 (14)0.0402 (14)0.0053 (11)0.0066 (11)0.0157 (11)
C60.0424 (13)0.0311 (11)0.0339 (12)0.0037 (10)0.0052 (10)0.0109 (10)
C70.0598 (17)0.101 (2)0.0598 (18)0.0409 (16)0.0074 (14)0.0278 (17)
C80.0450 (13)0.0363 (12)0.0380 (13)0.0111 (10)0.0058 (10)0.0127 (10)
C90.0319 (11)0.0387 (12)0.0313 (12)0.0077 (9)0.0019 (9)0.0144 (10)
C100.0494 (14)0.0326 (11)0.0315 (12)0.0110 (10)0.0056 (10)0.0135 (9)
C110.0478 (14)0.0472 (14)0.0487 (15)0.0026 (11)0.0052 (12)0.0239 (12)
C120.0579 (17)0.0569 (16)0.0475 (15)0.0036 (13)0.0052 (13)0.0274 (13)
C130.0694 (17)0.0452 (14)0.0338 (13)0.0083 (12)0.0056 (12)0.0152 (11)
C140.0504 (14)0.0455 (14)0.0404 (14)0.0049 (11)0.0128 (11)0.0143 (11)
C150.0428 (13)0.0400 (12)0.0361 (13)0.0090 (10)0.0031 (10)0.0141 (10)
C160.101 (2)0.080 (2)0.0370 (15)0.0053 (17)0.0084 (15)0.0226 (14)
C170.0470 (15)0.0767 (19)0.0493 (16)0.0126 (13)0.0008 (12)0.0279 (14)
Geometric parameters (Å, º) top
S1—C91.660 (2)C7—H7A0.9600
O1—C81.218 (3)C7—H7B0.9600
N1—C81.366 (3)C7—H7C0.9600
N1—C91.392 (3)C10—C111.380 (3)
N1—H10.8600C10—C151.387 (3)
N2—C91.325 (3)C11—C121.384 (3)
N2—C101.433 (3)C11—H110.9300
N2—H20.8600C12—C131.378 (3)
C1—C61.381 (3)C12—H120.9300
C1—C21.381 (3)C13—C141.381 (3)
C1—H1A0.9300C13—C161.511 (3)
C2—C31.367 (4)C14—C151.383 (3)
C2—H2A0.9300C14—H140.9300
C3—C41.358 (4)C15—C171.505 (3)
C3—H30.9300C16—H16A0.9600
C4—C51.386 (3)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.395 (3)C17—H17A0.9600
C5—C71.501 (3)C17—H17B0.9600
C6—C81.496 (3)C17—H17C0.9600
C8—N1—C9129.81 (17)N2—C9—N1116.13 (18)
C8—N1—H1115.1N2—C9—S1125.20 (16)
C9—N1—H1115.1N1—C9—S1118.67 (15)
C9—N2—C10124.43 (18)C11—C10—C15120.8 (2)
C9—N2—H2117.8C11—C10—N2117.8 (2)
C10—N2—H2117.8C15—C10—N2121.3 (2)
C6—C1—C2120.2 (2)C10—C11—C12120.0 (2)
C6—C1—H1A119.9C10—C11—H11120.0
C2—C1—H1A119.9C12—C11—H11120.0
C3—C2—C1119.4 (2)C13—C12—C11121.0 (2)
C3—C2—H2A120.3C13—C12—H12119.5
C1—C2—H2A120.3C11—C12—H12119.5
C4—C3—C2120.7 (2)C12—C13—C14117.4 (2)
C4—C3—H3119.7C12—C13—C16121.2 (2)
C2—C3—H3119.7C14—C13—C16121.4 (2)
C3—C4—C5121.6 (2)C13—C14—C15123.6 (2)
C3—C4—H4119.2C13—C14—H14118.2
C5—C4—H4119.2C15—C14—H14118.2
C4—C5—C6117.7 (2)C14—C15—C10117.2 (2)
C4—C5—C7119.4 (2)C14—C15—C17120.6 (2)
C6—C5—C7122.9 (2)C10—C15—C17122.2 (2)
C1—C6—C5120.4 (2)C13—C16—H16A109.5
C1—C6—C8118.0 (2)C13—C16—H16B109.5
C5—C6—C8121.57 (19)H16A—C16—H16B109.5
C5—C7—H7A109.5C13—C16—H16C109.5
C5—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
C5—C7—H7C109.5C15—C17—H17A109.5
H7A—C7—H7C109.5C15—C17—H17B109.5
H7B—C7—H7C109.5H17A—C17—H17B109.5
O1—C8—N1123.27 (19)C15—C17—H17C109.5
O1—C8—C6123.18 (19)H17A—C17—H17C109.5
N1—C8—C6113.52 (18)H17B—C17—H17C109.5
C6—C1—C2—C31.5 (4)C10—N2—C9—S14.5 (3)
C1—C2—C3—C40.3 (4)C8—N1—C9—N25.5 (3)
C2—C3—C4—C51.2 (4)C8—N1—C9—S1173.80 (17)
C3—C4—C5—C60.2 (3)C9—N2—C10—C11108.4 (2)
C3—C4—C5—C7178.7 (3)C9—N2—C10—C1574.2 (3)
C2—C1—C6—C52.5 (3)C15—C10—C11—C121.9 (3)
C2—C1—C6—C8176.4 (2)N2—C10—C11—C12179.4 (2)
C4—C5—C6—C11.7 (3)C10—C11—C12—C130.3 (4)
C7—C5—C6—C1176.8 (2)C11—C12—C13—C141.3 (4)
C4—C5—C6—C8177.2 (2)C11—C12—C13—C16179.6 (2)
C7—C5—C6—C84.3 (3)C12—C13—C14—C151.3 (4)
C9—N1—C8—O18.8 (4)C16—C13—C14—C15179.6 (2)
C9—N1—C8—C6173.14 (19)C13—C14—C15—C100.3 (3)
C1—C6—C8—O157.8 (3)C13—C14—C15—C17177.2 (2)
C5—C6—C8—O1123.3 (3)C11—C10—C15—C141.9 (3)
C1—C6—C8—N1120.3 (2)N2—C10—C15—C14179.21 (19)
C5—C6—C8—N158.6 (3)C11—C10—C15—C17175.5 (2)
C10—N2—C9—N1174.81 (18)N2—C10—C15—C171.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.032.706135
C17—H17B···S10.962.803.496130
N1—H1···S1i0.862.573.372155
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2OS
Mr298.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.2569 (15), 9.862 (2), 13.986 (3)
α, β, γ (°)69.461 (4), 86.199 (4), 75.206 (4)
V3)781.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.27 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.946, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7817, 2904, 2069
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.02
No. of reflections2904
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.032.706135
C17—H17B···S10.962.803.496130
N1—H1···S1i0.862.573.372155
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia for Fundamental Research Grants OUP UKM-OUP-BIT-28/20076 and UMT-FRGS-59001, and Universiti Kebangsaan Malaysia and HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds