metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-acetyl-3-methyl­pyrazine (2-hy­droxy­benzo­yl)hydrazonato]zinc(II) monohydrate

aDepartment of Chemistry, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 7 April 2008; accepted 8 April 2008; online 10 April 2008)

In the title compound, [Zn(C14H13N4O2)2]·H2O, the ZnII centre is six-coordinated by four N and two O donors of two 2-acetyl-3-methyl­pyrazine (2-hydroxy­benzo­yl)hydrazonate ligands, and forms a distorted octa­hedral structure.

Related literature

For related literature, see: Herzfeld & Nagy (1999[Herzfeld, R. & Nagy, P. (1999). Spectrosc. Lett. 31, 57-65.]); Xi-Shi & Yi-Min (2008[Xi-Shi, T. & Yi-Min, F. (2008). Acta Cryst. E64, o707.]); Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]); Tai et al. (2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.]); Tai, Feng, Kong, Wang & Tan (2007[Tai, X. S., Feng, Y. M., Kong, F. Y., Wang, D. Q. & Tan, M. Y. (2007). Chin. J. Inorg. Chem. 23, 1812-1814.]); Tai, Yin & Feng (2007[Tai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398-400.]); Tai, Yin & Hao (2007[Tai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061-m1062.]); Tai, Yin, Feng & Kong (2007[Tai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812-1814.]); Wang et al. (2007[Wang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H13N4O2)2]·H2O

  • Mr = 621.95

  • Monoclinic, P 21 /n

  • a = 9.3794 (10) Å

  • b = 22.814 (2) Å

  • c = 13.9407 (14) Å

  • β = 106.402 (2)°

  • V = 2861.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 298 (2) K

  • 0.32 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.868

  • 14227 measured reflections

  • 5043 independent reflections

  • 2831 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.01

  • 5043 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base ligands are able to coordinate metals through imine nitrogen and another group, usually linked to the aldehyde. Modern chemists still prepare Schiff-bases, and nowadays active and well designed Schiff-base ligands are considered to be "privileged ligands" (Tai & Feng, 2008; Tai, Feng, Kong, Wang & Tan, 2007; Tai et al., 2008; Tai, Yin & Feng, 2007; Tai, Yin, Feng & Kong, 2007; Tai, Yin & Hao, 2007; Tai et al., 2003; Wang et al., 2007). In fact, Schiff bases are able to stabilize many different metals in various oxidation states. Schiff bases and their metal complexes play a key role in understanding the coordination chemistry of transition metal ions (Tai et al., 2003). In particular, the bidentate ligands containing imine groups have been used as modulators of structural, electronic, antitumor activity and fluorescence properties of transition metal centres (Herzfeld & Nagy, 1999). In order to investigate further the coordination and the properties of zinc complexes with Schiff bases ligands, as parts of our studies on the synthesis, characterization and properties of Schiff bases ligands and their metal complexes, we herein report the synthesis and structural characterization of a new zinc complex, Zn(2-acetyl-3-methylpyrazine salicyloyl hydrazone), (I).

The title compound consists of neutral complex, Zn[2-acetyl-3-methylpyrazine (2-hydroxybenzoyl)hydrazone]. The ZnII center is six-coordinate with four N and two O donors of 2-acetyl-3-methylpyrazine (2-hydroxybenzoyl)hydrazonate, and forms a distorted octahedron structure. The Zn—O and Zn—N bond lengths are in the ranges 2.055 (3)–2.079 (3) and 2.239 (4)–2.283 (3) Å, respectively. The Zn—O bond lengths are much shorter than Zn—N, which shows that the Zn—O bonds are stronger than the Zn—N bonds.

Related literature top

For related literature, see: Herzfeld & Nagy (1999); Xi-Shi & Yi-Min (2008); Tai et al. (2003); Tai et al. (2008); Tai, Feng, Kong, Wang & Tan (2007); Tai, Yin & Feng (2007); Tai, Yin & Hao (2007); Tai, Yin, Feng & Kong (2007); Wang et al. (2007).

Experimental top

The title compound was prepared as following: 1 mmol of ZnII acetate was added to the solution of 2-acetyl-3-methylpyrazine salicyloyl hydrazone (1 mmol) in a 10 ml of CH3CH2OH. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then the product was collected by filtration, yield 68%. The single-crystal suitable for X-ray determination was obtained by evaporation from ethanol solution after two weeks. A ethanol solution of the title compound was slowly evaporated and pale crystals were obtained after a weeks.

Refinement top

The positions of all H atoms were fixed geometrically [C—H = 0.93 for aromatic H and 0.96 Å for methyl H , O—H = 0.82 for hydroxy group and O—H = 0.85 Å for water molecules] and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, with 30% probabiility ellipsoids.
Bis[2-acetyl-3-methylpyrazine (2-hydroxybenzoyl)hydrazonato]zinc(II) monohydrate top
Crystal data top
[Zn(C14H13N4O2)2]·H2OF(000) = 1288
Mr = 621.95Dx = 1.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2538 reflections
a = 9.3794 (10) Åθ = 2.4–22.4°
b = 22.814 (2) ŵ = 0.91 mm1
c = 13.9407 (14) ÅT = 298 K
β = 106.402 (2)°Tabular, colourless
V = 2861.6 (5) Å30.32 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5043 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.759, Tmax = 0.868k = 2723
14227 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0366P)2 + 2.1233P]
where P = (Fo2 + 2Fc2)/3
5043 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C14H13N4O2)2]·H2OV = 2861.6 (5) Å3
Mr = 621.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3794 (10) ŵ = 0.91 mm1
b = 22.814 (2) ÅT = 298 K
c = 13.9407 (14) Å0.32 × 0.20 × 0.16 mm
β = 106.402 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2831 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.868Rint = 0.077
14227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
5043 reflectionsΔρmin = 0.35 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.09167 (6)0.14093 (2)0.53708 (4)0.04641 (19)
N10.0550 (4)0.24903 (15)0.5747 (2)0.0414 (9)
N20.0653 (4)0.23093 (15)0.5435 (2)0.0402 (9)
N30.2582 (4)0.18422 (16)0.4675 (3)0.0443 (9)
N40.4647 (4)0.2484 (2)0.4049 (3)0.0592 (11)
N50.2455 (4)0.02711 (15)0.5545 (3)0.0461 (9)
N60.1370 (4)0.05900 (16)0.4881 (3)0.0441 (9)
N70.0643 (4)0.12679 (16)0.3845 (3)0.0453 (9)
N80.2259 (5)0.1065 (2)0.1898 (3)0.0636 (12)
O10.0809 (3)0.14991 (13)0.5998 (2)0.0559 (9)
O20.2266 (4)0.32101 (14)0.6299 (3)0.0695 (10)
H20.15140.31100.61510.104*
O30.2353 (3)0.10277 (13)0.6631 (2)0.0512 (8)
O40.4380 (4)0.05320 (16)0.6118 (3)0.0852 (12)
H40.36920.03530.57370.128*
O50.7000 (4)0.3022 (2)0.3185 (3)0.1108 (16)
H5A0.61910.29400.33160.133*
H5B0.68380.32910.27460.133*
C10.1183 (5)0.2031 (2)0.6046 (3)0.0416 (11)
C20.2467 (4)0.21621 (19)0.6431 (3)0.0375 (10)
C30.2931 (5)0.2732 (2)0.6550 (3)0.0465 (11)
C40.4143 (5)0.2828 (2)0.6926 (3)0.0581 (13)
H4A0.44390.32080.70180.070*
C50.4885 (5)0.2362 (3)0.7158 (3)0.0608 (14)
H50.56960.24290.74030.073*
C60.4470 (5)0.1797 (2)0.7039 (4)0.0610 (14)
H60.49950.14830.71940.073*
C70.3265 (5)0.1706 (2)0.6685 (3)0.0511 (12)
H70.29720.13230.66120.061*
C80.0648 (5)0.32827 (19)0.4706 (3)0.0518 (12)
H8A0.04180.32680.45080.078*
H8B0.09850.34320.41640.078*
H8C0.09870.35350.52760.078*
C90.1257 (4)0.26797 (19)0.4972 (3)0.0390 (10)
C100.2528 (4)0.24350 (19)0.4667 (3)0.0401 (10)
C110.3614 (5)0.2760 (2)0.4387 (3)0.0472 (11)
C120.3827 (5)0.3412 (2)0.4497 (4)0.0720 (16)
H12A0.48530.35060.45830.108*
H12B0.35390.35430.50700.108*
H12C0.32240.36030.39080.108*
C130.4634 (5)0.1902 (3)0.4027 (4)0.0618 (14)
H130.53170.17060.37730.074*
C140.3641 (5)0.1584 (2)0.4370 (3)0.0526 (12)
H140.37110.11770.43890.063*
C150.2860 (5)0.0543 (2)0.6433 (3)0.0446 (11)
C160.4033 (5)0.02364 (19)0.7213 (3)0.0447 (11)
C170.4738 (5)0.0274 (2)0.7028 (4)0.0594 (13)
C180.5834 (6)0.0531 (2)0.7792 (4)0.0769 (17)
H180.63090.08670.76640.092*
C190.6226 (6)0.0297 (3)0.8728 (5)0.0829 (18)
H190.69530.04790.92350.099*
C200.5561 (6)0.0201 (3)0.8929 (4)0.0797 (17)
H200.58470.03640.95660.096*
C210.4463 (5)0.0461 (2)0.8181 (4)0.0611 (14)
H210.39960.07950.83250.073*
C220.1358 (6)0.0146 (2)0.3624 (4)0.0896 (19)
H22A0.21330.03160.41540.134*
H22B0.17330.00610.30660.134*
H22C0.05450.04170.34210.134*
C230.0833 (5)0.04049 (19)0.3982 (3)0.0436 (11)
C240.0357 (5)0.0788 (2)0.3363 (3)0.0440 (11)
C250.1161 (5)0.0696 (2)0.2352 (4)0.0555 (13)
C260.0901 (6)0.0220 (3)0.1688 (4)0.094 (2)
H26A0.16010.02570.10390.141*
H26B0.10260.01540.19690.141*
H26C0.00910.02510.16280.141*
C270.2551 (5)0.1511 (2)0.2407 (4)0.0602 (14)
H270.33340.17600.21030.072*
C280.1727 (5)0.1623 (2)0.3385 (4)0.0517 (12)
H280.19400.19510.37160.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0521 (3)0.0324 (3)0.0577 (3)0.0072 (3)0.0202 (3)0.0011 (3)
N10.040 (2)0.031 (2)0.057 (2)0.0013 (17)0.0200 (18)0.0008 (18)
N20.039 (2)0.034 (2)0.049 (2)0.0006 (17)0.0148 (17)0.0014 (17)
N30.042 (2)0.043 (3)0.050 (2)0.0068 (18)0.0173 (18)0.0016 (18)
N40.046 (2)0.066 (3)0.068 (3)0.007 (2)0.020 (2)0.000 (2)
N50.050 (2)0.031 (2)0.053 (2)0.0095 (18)0.0082 (19)0.0026 (19)
N60.044 (2)0.039 (2)0.049 (2)0.0045 (18)0.0115 (18)0.0056 (19)
N70.044 (2)0.036 (2)0.057 (2)0.0001 (18)0.0151 (19)0.0035 (19)
N80.062 (3)0.064 (3)0.059 (3)0.005 (2)0.007 (2)0.007 (2)
O10.070 (2)0.0278 (19)0.083 (2)0.0063 (16)0.0433 (18)0.0034 (16)
O20.073 (2)0.040 (2)0.108 (3)0.0033 (18)0.047 (2)0.010 (2)
O30.060 (2)0.038 (2)0.055 (2)0.0091 (16)0.0152 (16)0.0037 (16)
O40.105 (3)0.067 (3)0.070 (2)0.047 (2)0.004 (2)0.004 (2)
O50.083 (3)0.131 (4)0.118 (3)0.007 (3)0.028 (3)0.042 (3)
C10.047 (3)0.033 (3)0.046 (3)0.002 (2)0.015 (2)0.000 (2)
C20.038 (2)0.038 (3)0.037 (2)0.001 (2)0.0099 (19)0.002 (2)
C30.048 (3)0.040 (3)0.054 (3)0.003 (2)0.017 (2)0.006 (2)
C40.056 (3)0.051 (3)0.072 (3)0.018 (3)0.025 (3)0.005 (3)
C50.053 (3)0.076 (4)0.060 (3)0.005 (3)0.028 (3)0.008 (3)
C60.061 (3)0.059 (4)0.073 (4)0.010 (3)0.036 (3)0.008 (3)
C70.062 (3)0.039 (3)0.057 (3)0.001 (2)0.025 (3)0.005 (2)
C80.062 (3)0.036 (3)0.058 (3)0.006 (2)0.019 (2)0.013 (2)
C90.040 (3)0.036 (3)0.040 (2)0.003 (2)0.009 (2)0.002 (2)
C100.042 (3)0.036 (3)0.040 (3)0.000 (2)0.008 (2)0.004 (2)
C110.046 (3)0.048 (3)0.047 (3)0.004 (2)0.011 (2)0.000 (2)
C120.069 (4)0.059 (4)0.091 (4)0.020 (3)0.028 (3)0.006 (3)
C130.048 (3)0.069 (4)0.075 (4)0.005 (3)0.027 (3)0.008 (3)
C140.051 (3)0.048 (3)0.062 (3)0.008 (2)0.021 (2)0.002 (2)
C150.043 (3)0.035 (3)0.057 (3)0.002 (2)0.016 (2)0.005 (2)
C160.051 (3)0.031 (3)0.050 (3)0.000 (2)0.010 (2)0.007 (2)
C170.066 (3)0.043 (3)0.067 (3)0.010 (3)0.017 (3)0.010 (3)
C180.080 (4)0.055 (4)0.085 (4)0.028 (3)0.007 (3)0.018 (3)
C190.091 (4)0.062 (4)0.075 (4)0.007 (3)0.012 (3)0.022 (3)
C200.106 (5)0.052 (4)0.065 (4)0.007 (3)0.001 (3)0.011 (3)
C210.074 (4)0.039 (3)0.063 (3)0.001 (3)0.009 (3)0.002 (3)
C220.122 (5)0.052 (4)0.075 (4)0.032 (3)0.006 (3)0.015 (3)
C230.050 (3)0.032 (3)0.051 (3)0.003 (2)0.016 (2)0.001 (2)
C240.043 (3)0.041 (3)0.050 (3)0.003 (2)0.016 (2)0.005 (2)
C250.064 (3)0.047 (3)0.053 (3)0.008 (3)0.013 (3)0.002 (3)
C260.113 (5)0.091 (5)0.056 (3)0.023 (4)0.010 (3)0.020 (3)
C270.042 (3)0.065 (4)0.071 (4)0.003 (3)0.012 (3)0.020 (3)
C280.047 (3)0.046 (3)0.062 (3)0.009 (2)0.016 (3)0.005 (2)
Geometric parameters (Å, º) top
Zn1—O12.055 (3)C7—H70.9300
Zn1—N22.073 (3)C8—C91.496 (6)
Zn1—N62.075 (4)C8—H8A0.9600
Zn1—O32.079 (3)C8—H8B0.9600
Zn1—N72.239 (4)C8—H8C0.9600
Zn1—N32.283 (3)C9—C101.483 (6)
N1—C11.329 (5)C10—C111.401 (6)
N1—N21.381 (4)C11—C121.503 (6)
N2—C91.288 (5)C12—H12A0.9600
N3—C141.324 (5)C12—H12B0.9600
N3—C101.353 (5)C12—H12C0.9600
N4—C131.329 (6)C13—C141.370 (6)
N4—C111.346 (5)C13—H130.9300
N5—C151.341 (5)C14—H140.9300
N5—N61.374 (4)C15—C161.486 (6)
N6—C231.283 (5)C16—C211.391 (6)
N7—C281.317 (5)C16—C171.398 (6)
N7—C241.350 (5)C17—C181.385 (6)
N8—C271.314 (6)C18—C191.360 (7)
N8—C251.341 (6)C18—H180.9300
O1—C11.270 (5)C19—C201.363 (8)
O2—C31.351 (5)C19—H190.9300
O2—H20.8200C20—C211.376 (6)
O3—C151.264 (5)C20—H200.9300
O4—C171.351 (6)C21—H210.9300
O4—H40.8200C22—C231.487 (6)
O5—H5A0.8500C22—H22A0.9600
O5—H5B0.8500C22—H22B0.9600
C1—C21.482 (6)C22—H22C0.9600
C2—C71.384 (6)C23—C241.487 (6)
C2—C31.395 (6)C24—C251.413 (6)
C3—C41.398 (6)C25—C261.492 (7)
C4—C51.358 (7)C26—H26A0.9600
C4—H4A0.9300C26—H26B0.9600
C5—C61.370 (7)C26—H26C0.9600
C5—H50.9300C27—C281.388 (6)
C6—C71.372 (6)C27—H270.9300
C6—H60.9300C28—H280.9300
O1—Zn1—N276.41 (12)N3—C10—C11120.2 (4)
O1—Zn1—N6119.26 (13)N3—C10—C9113.9 (4)
N2—Zn1—N6160.85 (13)C11—C10—C9125.9 (4)
O1—Zn1—O394.73 (12)N4—C11—C10120.1 (4)
N2—Zn1—O3115.77 (12)N4—C11—C12114.2 (4)
N6—Zn1—O375.91 (13)C10—C11—C12125.6 (4)
O1—Zn1—N792.09 (13)C11—C12—H12A109.5
N2—Zn1—N797.47 (13)C11—C12—H12B109.5
N6—Zn1—N772.39 (14)H12A—C12—H12B109.5
O3—Zn1—N7146.75 (13)C11—C12—H12C109.5
O1—Zn1—N3148.55 (13)H12A—C12—H12C109.5
N2—Zn1—N372.21 (13)H12B—C12—H12C109.5
N6—Zn1—N391.23 (13)N4—C13—C14121.6 (5)
O3—Zn1—N3100.51 (12)N4—C13—H13119.2
N7—Zn1—N390.03 (12)C14—C13—H13119.2
C1—N1—N2109.9 (3)N3—C14—C13121.4 (5)
C9—N2—N1118.4 (3)N3—C14—H14119.3
C9—N2—Zn1123.6 (3)C13—C14—H14119.3
N1—N2—Zn1115.3 (2)O3—C15—N5125.5 (4)
C14—N3—C10118.2 (4)O3—C15—C16119.9 (4)
C14—N3—Zn1127.5 (3)N5—C15—C16114.6 (4)
C10—N3—Zn1114.0 (3)C21—C16—C17117.6 (4)
C13—N4—C11118.2 (4)C21—C16—C15119.2 (4)
C15—N5—N6109.9 (4)C17—C16—C15123.2 (4)
C23—N6—N5119.7 (4)O4—C17—C18118.1 (5)
C23—N6—Zn1123.9 (3)O4—C17—C16122.1 (4)
N5—N6—Zn1115.9 (3)C18—C17—C16119.8 (5)
C28—N7—C24119.5 (4)C19—C18—C17120.8 (5)
C28—N7—Zn1125.5 (3)C19—C18—H18119.6
C24—N7—Zn1114.9 (3)C17—C18—H18119.6
C27—N8—C25118.7 (4)C18—C19—C20120.6 (5)
C1—O1—Zn1112.3 (3)C18—C19—H19119.7
C3—O2—H2109.5C20—C19—H19119.7
C15—O3—Zn1112.1 (3)C19—C20—C21119.4 (5)
C17—O4—H4109.5C19—C20—H20120.3
H5A—O5—H5B108.9C21—C20—H20120.3
O1—C1—N1125.7 (4)C20—C21—C16121.8 (5)
O1—C1—C2118.5 (4)C20—C21—H21119.1
N1—C1—C2115.8 (4)C16—C21—H21119.1
C7—C2—C3117.5 (4)C23—C22—H22A109.5
C7—C2—C1119.6 (4)C23—C22—H22B109.5
C3—C2—C1122.9 (4)H22A—C22—H22B109.5
O2—C3—C2122.6 (4)C23—C22—H22C109.5
O2—C3—C4117.0 (4)H22A—C22—H22C109.5
C2—C3—C4120.3 (4)H22B—C22—H22C109.5
C5—C4—C3119.4 (5)N6—C23—C22122.0 (4)
C5—C4—H4A120.3N6—C23—C24113.4 (4)
C3—C4—H4A120.3C22—C23—C24124.6 (4)
C4—C5—C6121.7 (4)N7—C24—C25119.4 (4)
C4—C5—H5119.1N7—C24—C23114.2 (4)
C6—C5—H5119.1C25—C24—C23126.4 (4)
C5—C6—C7118.6 (5)N8—C25—C24120.0 (5)
C5—C6—H6120.7N8—C25—C26113.7 (4)
C7—C6—H6120.7C24—C25—C26126.3 (5)
C6—C7—C2122.5 (5)C25—C26—H26A109.5
C6—C7—H7118.8C25—C26—H26B109.5
C2—C7—H7118.8H26A—C26—H26B109.5
C9—C8—H8A109.5C25—C26—H26C109.5
C9—C8—H8B109.5H26A—C26—H26C109.5
H8A—C8—H8B109.5H26B—C26—H26C109.5
C9—C8—H8C109.5N8—C27—C28122.0 (5)
H8A—C8—H8C109.5N8—C27—H27119.0
H8B—C8—H8C109.5C28—C27—H27119.0
N2—C9—C10113.6 (4)N7—C28—C27120.3 (5)
N2—C9—C8122.5 (4)N7—C28—H28119.9
C10—C9—C8123.8 (4)C27—C28—H28119.9
C1—N1—N2—C9169.0 (4)C3—C4—C5—C60.5 (7)
C1—N1—N2—Zn17.0 (4)C4—C5—C6—C70.6 (8)
O1—Zn1—N2—C9166.9 (3)C5—C6—C7—C20.9 (7)
N6—Zn1—N2—C920.1 (6)C3—C2—C7—C60.2 (6)
O3—Zn1—N2—C9104.4 (3)C1—C2—C7—C6179.5 (4)
N7—Zn1—N2—C976.6 (3)N1—N2—C9—C10179.5 (3)
N3—Zn1—N2—C911.0 (3)Zn1—N2—C9—C1019.0 (5)
O1—Zn1—N2—N15.9 (2)N1—N2—C9—C83.9 (6)
N6—Zn1—N2—N1140.9 (4)Zn1—N2—C9—C8156.6 (3)
O3—Zn1—N2—N194.6 (3)C14—N3—C10—C112.9 (6)
N7—Zn1—N2—N184.5 (3)Zn1—N3—C10—C11171.5 (3)
N3—Zn1—N2—N1172.1 (3)C14—N3—C10—C9177.0 (3)
O1—Zn1—N3—C14177.5 (3)Zn1—N3—C10—C98.6 (4)
N2—Zn1—N3—C14173.7 (4)N2—C9—C10—N317.1 (5)
N6—Zn1—N3—C1416.1 (4)C8—C9—C10—N3158.5 (4)
O3—Zn1—N3—C1459.8 (4)N2—C9—C10—C11162.9 (4)
N7—Zn1—N3—C1488.5 (4)C8—C9—C10—C1121.5 (6)
O1—Zn1—N3—C103.7 (4)C13—N4—C11—C102.5 (6)
N2—Zn1—N3—C100.1 (3)C13—N4—C11—C12173.2 (4)
N6—Zn1—N3—C10170.2 (3)N3—C10—C11—N45.2 (6)
O3—Zn1—N3—C10114.0 (3)C9—C10—C11—N4174.7 (4)
N7—Zn1—N3—C1097.8 (3)N3—C10—C11—C12169.9 (4)
C15—N5—N6—C23179.7 (4)C9—C10—C11—C1210.1 (7)
C15—N5—N6—Zn17.7 (4)C11—N4—C13—C142.4 (7)
O1—Zn1—N6—C2392.9 (3)C10—N3—C14—C131.9 (6)
N2—Zn1—N6—C2349.5 (6)Zn1—N3—C14—C13175.4 (3)
O3—Zn1—N6—C23179.6 (4)N4—C13—C14—N34.7 (7)
N7—Zn1—N6—C2310.6 (3)Zn1—O3—C15—N55.1 (5)
N3—Zn1—N6—C2379.1 (3)Zn1—O3—C15—C16173.2 (3)
O1—Zn1—N6—N595.5 (3)N6—N5—C15—O31.6 (6)
N2—Zn1—N6—N5122.1 (4)N6—N5—C15—C16180.0 (3)
O3—Zn1—N6—N58.0 (3)O3—C15—C16—C215.8 (6)
N7—Zn1—N6—N5177.8 (3)N5—C15—C16—C21175.7 (4)
N3—Zn1—N6—N592.6 (3)O3—C15—C16—C17174.3 (4)
O1—Zn1—N7—C2854.9 (4)N5—C15—C16—C174.1 (6)
N2—Zn1—N7—C2821.7 (4)C21—C16—C17—O4178.7 (4)
N6—Zn1—N7—C28175.0 (4)C15—C16—C17—O41.1 (7)
O3—Zn1—N7—C28156.8 (3)C21—C16—C17—C180.9 (7)
N3—Zn1—N7—C2893.7 (4)C15—C16—C17—C18179.3 (5)
O1—Zn1—N7—C24128.8 (3)O4—C17—C18—C19178.9 (5)
N2—Zn1—N7—C24154.6 (3)C16—C17—C18—C190.7 (8)
N6—Zn1—N7—C248.7 (3)C17—C18—C19—C201.0 (9)
O3—Zn1—N7—C2426.9 (4)C18—C19—C20—C211.4 (9)
N3—Zn1—N7—C2482.6 (3)C19—C20—C21—C161.6 (8)
N2—Zn1—O1—C13.6 (3)C17—C16—C21—C201.3 (7)
N6—Zn1—O1—C1164.5 (3)C15—C16—C21—C20178.9 (5)
O3—Zn1—O1—C1119.0 (3)N5—N6—C23—C220.6 (6)
N7—Zn1—O1—C193.6 (3)Zn1—N6—C23—C22170.7 (4)
N3—Zn1—O1—C10.1 (4)N5—N6—C23—C24178.5 (3)
O1—Zn1—O3—C15125.7 (3)Zn1—N6—C23—C2410.2 (5)
N2—Zn1—O3—C15157.1 (3)C28—N7—C24—C254.0 (6)
N6—Zn1—O3—C156.7 (3)Zn1—N7—C24—C25172.5 (3)
N7—Zn1—O3—C1524.6 (4)C28—N7—C24—C23176.6 (4)
N3—Zn1—O3—C1581.9 (3)Zn1—N7—C24—C236.8 (4)
Zn1—O1—C1—N10.9 (5)N6—C23—C24—N71.2 (5)
Zn1—O1—C1—C2176.8 (3)C22—C23—C24—N7179.7 (4)
N2—N1—C1—O14.1 (6)N6—C23—C24—C25179.4 (4)
N2—N1—C1—C2178.2 (3)C22—C23—C24—C250.4 (7)
O1—C1—C2—C72.9 (6)C27—N8—C25—C240.8 (7)
N1—C1—C2—C7175.0 (4)C27—N8—C25—C26177.9 (5)
O1—C1—C2—C3177.4 (4)N7—C24—C25—N83.9 (7)
N1—C1—C2—C34.7 (6)C23—C24—C25—N8176.8 (4)
C7—C2—C3—O2178.0 (4)N7—C24—C25—C26174.6 (5)
C1—C2—C3—O21.7 (7)C23—C24—C25—C264.7 (8)
C7—C2—C3—C40.9 (6)C25—N8—C27—C282.3 (7)
C1—C2—C3—C4179.4 (4)C24—N7—C28—C271.1 (6)
O2—C3—C4—C5177.7 (4)Zn1—N7—C28—C27175.1 (3)
C2—C3—C4—C51.3 (7)N8—C27—C28—N72.2 (7)

Experimental details

Crystal data
Chemical formula[Zn(C14H13N4O2)2]·H2O
Mr621.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.3794 (10), 22.814 (2), 13.9407 (14)
β (°) 106.402 (2)
V3)2861.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.32 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.759, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
14227, 5043, 2831
Rint0.077
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.02
No. of reflections5043
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20671073), the National Natural Science Foundation of Shandong (grant No. Y2007B60) and Weifang University for research grants.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerzfeld, R. & Nagy, P. (1999). Spectrosc. Lett. 31, 57–65.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X. S., Feng, Y. M., Kong, F. Y., Wang, D. Q. & Tan, M. Y. (2007). Chin. J. Inorg. Chem. 23, 1812–1814.  CAS Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398–400.  CAS Google Scholar
First citationTai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812–1814.  CAS Google Scholar
First citationTai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061–m1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXi-Shi, T. & Yi-Min, F. (2008). Acta Cryst. E64, o707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds