metal-organic compounds
Bis(2-amino-6-methylpyridinium) tetrabromidocuprate(II)
aFaculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, Jordan, bDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and cDepartment of Chemistry, The University of Jordan, Amman, Jordan
*Correspondence e-mail: rohi@bau.edu.jo
In the 6H9N2)2[CuBr4], the geometry around the Cu atom is intermediate between tetrahedral (Td) and square planar (D4h). Each [CuBr4]2− anion is connected non-symmetrically to four surrounding cations through N—H⋯X (pyridine and amine proton) hydrogen bonds, forming chains of the ladder-type running parallel to the crystallographic b axis. These layers are further connected by means of offset face-to-face interactions (parallel to the a axis), giving a three-dimensional network. Cation π–π stacking [centroid separations of 3.69 (9) and 3.71 (1) Å] and Br⋯aryl interactions [3.72 (2) and 4.04 (6) Å] are present in the There are no intermolecular Br⋯Br interactions.
of the title compound, (CRelated literature
For related literature, see: Al-Far & Ali (2007a,b); Ali & Al-Far (2007, 2008); Allen et al. (1987, 1997); Desiraju & Steiner (1999); Dolling et al. (2001); Haddad et al. (2006); Hunter (1994); Panunto et al. (1987); Raithby et al. (2000); Robinson et al. (2000); Luque et al. (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: XSCANS (Bruker, 1996); cell XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808010647/at2561sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010647/at2561Isup2.hkl
To a warm solution of 2-amino-6-methylpyridine (2 mmol) dissolved in 10 ml absolute ethanol acidified with 3 ml 60% HBr, CuBr2 (1 mmol) dissolved in 10 ml absolute ethanol was added. The resulting solution was then treated with 2 ml of Br2 (l). The mixture was refluxed for 2 h. The mixture was then allowed to stand and evaporate slowly at room temperature. In two days time, block blue crystals were formed and filtered (yield, 86.5%). A single-crystal suitable for diffraction measurements were chosen and used for data collection.
H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93 and 0.96 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 or 1.5 Ueq(C,N).
Data collection: XSCANS (Bruker, 1996); cell
XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C6H9N2)2[CuBr4] | Z = 2 |
Mr = 601.45 | F(000) = 574 |
Triclinic, P1 | Dx = 2.056 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9238 (9) Å | Cell parameters from 298 reflections |
b = 8.2521 (11) Å | θ = 2.2–27.5° |
c = 15.2916 (18) Å | µ = 9.35 mm−1 |
α = 78.472 (11)° | T = 293 K |
β = 82.839 (10)° | Block, blue |
γ = 89.947 (14)° | 0.20 × 0.15 × 0.10 mm |
V = 971.8 (2) Å3 |
Bruker P4 diffractometer | 3567 independent reflections |
Radiation source: fine-focus sealed tube | 2018 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 3 pixels mm-1 | θmax = 25.5°, θmin = 2.5° |
ω scans | h = −9→1 |
Absorption correction: ψ scan (PROGRAM; REF (YEAR) | k = −9→9 |
Tmin = 0.199, Tmax = 0.392 | l = −18→18 |
4381 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0724P)2] where P = (Fo2 + 2Fc2)/3 |
3567 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
(C6H9N2)2[CuBr4] | γ = 89.947 (14)° |
Mr = 601.45 | V = 971.8 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9238 (9) Å | Mo Kα radiation |
b = 8.2521 (11) Å | µ = 9.35 mm−1 |
c = 15.2916 (18) Å | T = 293 K |
α = 78.472 (11)° | 0.20 × 0.15 × 0.10 mm |
β = 82.839 (10)° |
Bruker P4 diffractometer | 3567 independent reflections |
Absorption correction: ψ scan (PROGRAM; REF (YEAR) | 2018 reflections with I > 2σ(I) |
Tmin = 0.199, Tmax = 0.392 | Rint = 0.053 |
4381 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.57 e Å−3 |
3567 reflections | Δρmin = −0.65 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.18757 (14) | 0.94944 (11) | 0.69574 (7) | 0.0597 (3) | |
Cu1 | 0.32354 (14) | 0.69646 (13) | 0.74711 (8) | 0.0442 (3) | |
N1 | 0.6876 (10) | 1.0718 (9) | 1.0416 (6) | 0.052 (2) | |
H1 | 0.6292 | 1.1120 | 1.0832 | 0.062* | |
Br2 | 0.08231 (15) | 0.54289 (13) | 0.82710 (9) | 0.0745 (4) | |
N2 | 0.6864 (13) | 0.8282 (10) | 1.1440 (6) | 0.074 (3) | |
H2A | 0.6268 | 0.8750 | 1.1825 | 0.089* | |
H2B | 0.7143 | 0.7266 | 1.1591 | 0.089* | |
C2 | 0.7347 (13) | 0.9116 (12) | 1.0624 (7) | 0.052 (3) | |
Br3 | 0.56567 (13) | 0.80573 (15) | 0.79499 (8) | 0.0679 (4) | |
C3 | 0.8257 (13) | 0.8462 (13) | 0.9938 (8) | 0.060 (3) | |
H3 | 0.8594 | 0.7368 | 1.0049 | 0.072* | |
Br4 | 0.45192 (14) | 0.50445 (13) | 0.66438 (8) | 0.0650 (4) | |
C4 | 0.8653 (14) | 0.9439 (17) | 0.9100 (8) | 0.073 (4) | |
H4 | 0.9239 | 0.9006 | 0.8636 | 0.087* | |
C5 | 0.8171 (15) | 1.1093 (15) | 0.8947 (7) | 0.070 (3) | |
H5 | 0.8487 | 1.1761 | 0.8384 | 0.084* | |
C6 | 0.7270 (14) | 1.1742 (12) | 0.9585 (7) | 0.058 (3) | |
C7 | 0.6683 (17) | 1.3493 (13) | 0.9503 (9) | 0.089 (4) | |
H7C | 0.7028 | 1.4097 | 0.8902 | 0.134* | |
H7B | 0.7180 | 1.4007 | 0.9923 | 0.134* | |
H7A | 0.5465 | 1.3491 | 0.9630 | 0.134* | |
N8 | 0.0896 (10) | 0.7845 (9) | 0.5235 (5) | 0.049 (2) | |
H8 | 0.1279 | 0.8242 | 0.5653 | 0.059* | |
C9 | −0.0722 (12) | 0.7230 (11) | 0.5402 (7) | 0.049 (2) | |
N9 | −0.1600 (12) | 0.7226 (11) | 0.6204 (7) | 0.080 (3) | |
H9A | −0.1137 | 0.7608 | 0.6603 | 0.095* | |
H9B | −0.2629 | 0.6841 | 0.6322 | 0.095* | |
C10 | −0.1360 (13) | 0.6650 (11) | 0.4711 (8) | 0.057 (3) | |
H10 | −0.2473 | 0.6239 | 0.4788 | 0.068* | |
C11 | −0.0343 (14) | 0.6690 (12) | 0.3923 (8) | 0.057 (3) | |
H11 | −0.0771 | 0.6302 | 0.3461 | 0.069* | |
C12 | 0.1301 (15) | 0.7289 (12) | 0.3794 (7) | 0.062 (3) | |
H12 | 0.1968 | 0.7290 | 0.3249 | 0.074* | |
C13 | 0.1985 (13) | 0.7888 (11) | 0.4451 (7) | 0.052 (3) | |
C14 | 0.3706 (14) | 0.8601 (14) | 0.4410 (8) | 0.075 (3) | |
H14A | 0.3823 | 0.8923 | 0.4969 | 0.112* | |
H14B | 0.3878 | 0.9553 | 0.3929 | 0.112* | |
H14C | 0.4538 | 0.7792 | 0.4306 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0758 (8) | 0.0456 (6) | 0.0583 (7) | 0.0137 (5) | −0.0121 (6) | −0.0101 (5) |
Cu1 | 0.0410 (7) | 0.0451 (6) | 0.0453 (7) | 0.0029 (5) | 0.0001 (5) | −0.0096 (5) |
N1 | 0.049 (5) | 0.058 (5) | 0.050 (6) | −0.003 (4) | 0.005 (4) | −0.023 (4) |
Br2 | 0.0557 (7) | 0.0607 (7) | 0.0916 (10) | −0.0022 (5) | 0.0223 (7) | 0.0021 (6) |
N2 | 0.116 (9) | 0.060 (5) | 0.045 (6) | 0.010 (5) | −0.009 (6) | −0.003 (5) |
C2 | 0.067 (7) | 0.050 (6) | 0.046 (7) | 0.015 (5) | −0.013 (6) | −0.018 (5) |
Br3 | 0.0443 (6) | 0.1028 (9) | 0.0670 (8) | −0.0010 (6) | −0.0037 (6) | −0.0441 (7) |
C3 | 0.052 (7) | 0.067 (7) | 0.071 (9) | 0.000 (5) | −0.013 (6) | −0.034 (7) |
Br4 | 0.0553 (7) | 0.0640 (7) | 0.0793 (9) | 0.0006 (5) | 0.0101 (6) | −0.0345 (6) |
C4 | 0.050 (7) | 0.125 (11) | 0.061 (9) | 0.010 (7) | −0.010 (6) | −0.060 (8) |
C5 | 0.076 (8) | 0.100 (9) | 0.035 (7) | 0.001 (7) | −0.010 (6) | −0.013 (6) |
C6 | 0.063 (7) | 0.063 (6) | 0.044 (7) | −0.002 (5) | −0.010 (6) | −0.003 (5) |
C7 | 0.091 (10) | 0.069 (8) | 0.098 (11) | 0.009 (7) | 0.000 (8) | 0.001 (7) |
N8 | 0.050 (5) | 0.055 (5) | 0.045 (5) | 0.008 (4) | −0.009 (4) | −0.014 (4) |
C9 | 0.037 (6) | 0.049 (5) | 0.059 (7) | 0.009 (4) | −0.002 (5) | −0.010 (5) |
N9 | 0.058 (6) | 0.108 (8) | 0.080 (8) | −0.007 (5) | 0.009 (6) | −0.048 (6) |
C10 | 0.048 (6) | 0.053 (6) | 0.069 (8) | 0.010 (5) | −0.020 (6) | −0.001 (6) |
C11 | 0.057 (7) | 0.070 (7) | 0.049 (7) | 0.007 (6) | −0.022 (6) | −0.011 (5) |
C12 | 0.079 (9) | 0.070 (7) | 0.035 (6) | 0.017 (6) | −0.005 (6) | −0.005 (5) |
C13 | 0.055 (6) | 0.042 (5) | 0.053 (7) | 0.003 (5) | 0.002 (6) | 0.001 (5) |
C14 | 0.050 (7) | 0.091 (8) | 0.075 (9) | −0.006 (6) | 0.008 (6) | −0.006 (7) |
Br1—Cu1 | 2.3848 (14) | C7—H7B | 0.9600 |
Cu1—Br2 | 2.3575 (16) | C7—H7A | 0.9600 |
Cu1—Br4 | 2.3713 (14) | N8—C9 | 1.355 (12) |
Cu1—Br3 | 2.3765 (16) | N8—C13 | 1.382 (12) |
N1—C2 | 1.360 (11) | N8—H8 | 0.8600 |
N1—C6 | 1.377 (13) | C9—N9 | 1.331 (13) |
N1—H1 | 0.8600 | C9—C10 | 1.391 (14) |
N2—C2 | 1.310 (13) | N9—H9A | 0.8600 |
N2—H2A | 0.8600 | N9—H9B | 0.8600 |
N2—H2B | 0.8600 | C10—C11 | 1.359 (14) |
C2—C3 | 1.396 (13) | C10—H10 | 0.9300 |
C3—C4 | 1.371 (16) | C11—C12 | 1.370 (15) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.399 (15) | C12—C13 | 1.371 (14) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.335 (14) | C13—C14 | 1.475 (14) |
C5—H5 | 0.9300 | C14—H14A | 0.9600 |
C6—C7 | 1.504 (13) | C14—H14B | 0.9600 |
C7—H7C | 0.9600 | C14—H14C | 0.9600 |
Br2—Cu1—Br4 | 101.27 (6) | C6—C7—H7A | 109.5 |
Br2—Cu1—Br3 | 132.23 (7) | H7C—C7—H7A | 109.5 |
Br4—Cu1—Br3 | 100.99 (6) | H7B—C7—H7A | 109.5 |
Br2—Cu1—Br1 | 98.36 (6) | C9—N8—C13 | 125.5 (9) |
Br4—Cu1—Br1 | 129.74 (7) | C9—N8—H8 | 117.2 |
Br3—Cu1—Br1 | 98.93 (6) | C13—N8—H8 | 117.2 |
C2—N1—C6 | 124.6 (8) | N9—C9—N8 | 118.6 (10) |
C2—N1—H1 | 117.7 | N9—C9—C10 | 124.3 (10) |
C6—N1—H1 | 117.7 | N8—C9—C10 | 117.1 (9) |
C2—N2—H2A | 120.0 | C9—N9—H9A | 120.0 |
C2—N2—H2B | 120.0 | C9—N9—H9B | 120.0 |
H2A—N2—H2B | 120.0 | H9A—N9—H9B | 120.0 |
N2—C2—N1 | 117.9 (9) | C11—C10—C9 | 119.4 (10) |
N2—C2—C3 | 124.8 (9) | C11—C10—H10 | 120.3 |
N1—C2—C3 | 117.3 (10) | C9—C10—H10 | 120.3 |
C4—C3—C2 | 119.8 (10) | C10—C11—C12 | 121.3 (10) |
C4—C3—H3 | 120.1 | C10—C11—H11 | 119.4 |
C2—C3—H3 | 120.1 | C12—C11—H11 | 119.4 |
C3—C4—C5 | 119.5 (10) | C11—C12—C13 | 121.6 (10) |
C3—C4—H4 | 120.3 | C11—C12—H12 | 119.2 |
C5—C4—H4 | 120.3 | C13—C12—H12 | 119.2 |
C6—C5—C4 | 122.0 (11) | C12—C13—N8 | 115.1 (10) |
C6—C5—H5 | 119.0 | C12—C13—C14 | 128.1 (11) |
C4—C5—H5 | 119.0 | N8—C13—C14 | 116.8 (10) |
C5—C6—N1 | 116.8 (10) | C13—C14—H14A | 109.5 |
C5—C6—C7 | 126.9 (11) | C13—C14—H14B | 109.5 |
N1—C6—C7 | 116.3 (9) | H14A—C14—H14B | 109.5 |
C6—C7—H7C | 109.5 | C13—C14—H14C | 109.5 |
C6—C7—H7B | 109.5 | H14A—C14—H14C | 109.5 |
H7C—C7—H7B | 109.5 | H14B—C14—H14C | 109.5 |
C6—N1—C2—N2 | −179.2 (10) | C13—N8—C9—N9 | 177.8 (9) |
C6—N1—C2—C3 | −1.6 (15) | C13—N8—C9—C10 | −2.5 (13) |
N2—C2—C3—C4 | 178.1 (11) | N9—C9—C10—C11 | −179.0 (10) |
N1—C2—C3—C4 | 0.7 (15) | N8—C9—C10—C11 | 1.4 (13) |
C2—C3—C4—C5 | 1.4 (16) | C9—C10—C11—C12 | 0.1 (15) |
C3—C4—C5—C6 | −2.8 (17) | C10—C11—C12—C13 | −0.6 (16) |
C4—C5—C6—N1 | 1.9 (17) | C11—C12—C13—N8 | −0.3 (14) |
C4—C5—C6—C7 | 179.9 (11) | C11—C12—C13—C14 | −178.6 (10) |
C2—N1—C6—C5 | 0.3 (16) | C9—N8—C13—C12 | 2.0 (14) |
C2—N1—C6—C7 | −177.9 (9) | C9—N8—C13—C14 | −179.5 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br3i | 0.86 | 2.47 | 3.324 (7) | 172 |
N8—H8···Br1 | 0.86 | 2.52 | 3.367 (8) | 170 |
N9—H9B···Br4ii | 0.86 | 2.64 | 3.487 (10) | 168 |
N2—H2B···Br2iii | 0.86 | 2.73 | 3.547 (9) | 158 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | (C6H9N2)2[CuBr4] |
Mr | 601.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.9238 (9), 8.2521 (11), 15.2916 (18) |
α, β, γ (°) | 78.472 (11), 82.839 (10), 89.947 (14) |
V (Å3) | 971.8 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.35 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (PROGRAM; REF (YEAR) |
Tmin, Tmax | 0.199, 0.392 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4381, 3567, 2018 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.153, 1.00 |
No. of reflections | 3567 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.65 |
Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Br1—Cu1 | 2.3848 (14) | Cu1—Br4 | 2.3713 (14) |
Cu1—Br2 | 2.3575 (16) | Cu1—Br3 | 2.3765 (16) |
Br2—Cu1—Br4 | 101.27 (6) | Br2—Cu1—Br1 | 98.36 (6) |
Br2—Cu1—Br3 | 132.23 (7) | Br4—Cu1—Br1 | 129.74 (7) |
Br4—Cu1—Br3 | 100.99 (6) | Br3—Cu1—Br1 | 98.93 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br3i | 0.86 | 2.47 | 3.324 (7) | 172.1 |
N8—H8···Br1 | 0.86 | 2.52 | 3.367 (8) | 170.3 |
N9—H9B···Br4ii | 0.86 | 2.64 | 3.487 (10) | 167.5 |
N2—H2B···Br2iii | 0.86 | 2.73 | 3.547 (9) | 158.0 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2. |
Acknowledgements
Al al-Bayt University and Al-Balqa'a Applied University are thanked for financial support.
References
Al-Far, R. & Ali, B. F. (2007a). Acta Cryst. C63, m137–m139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Far, R. & Ali, B. F. (2007b). J. Chem. Crystallogr. 37, 333–341. Web of Science CSD CrossRef CAS Google Scholar
Ali, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451–m453. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, B. F. & Al-Far, R. (2008). J. Chem. Crystallogr. In the press. Google Scholar
Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480. CSD CrossRef CAS Web of Science Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X.-M. (2001). Chem. Commun. pp. 567–568. Web of Science CSD CrossRef Google Scholar
Haddad, S. F., AlDaamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432. Web of Science CrossRef CAS Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 2, 101–109. CrossRef Web of Science Google Scholar
Luque, A., Sertucha, J., Castillo, O. & Román, P. (2001). New J. Chem. 25, 1208–1214. Web of Science CSD CrossRef CAS Google Scholar
Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797. CSD CrossRef CAS Web of Science Google Scholar
Raithby, P. R., Shields, G. P., Allen, F. H. & Motherwell, W. D. S. (2000). Acta Cryst. B56, 444–454. Web of Science CrossRef CAS IUCr Journals Google Scholar
Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 10, 799–806. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems. They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter 1994; Desiraju & Steiner 1999), crystal engineering (see for example: Allen et al.,1997; Dolling et al., 2001) and material science (Panunto et al., 1987; Robinson et al., 2000). The interactions governing the crystal organization are expected to affect the packing and then the specific properties of solids. In connection with ongoing studies (Ali & Al-Far, 2008; Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b) of the structural aspects of halo-metal anion salts, we herein report the crystal structure of title compound (I) along with its crystal supramolecularity.
The asymmetric unit in (I) contains one anion and two cations (Fig. 1). The Cu—Br distances are similar, but Cu—Br2 that is engaged in longest hydrogen bonding is shorter than the others (Table 2). The Cu—Br bond distances fall in the range of bond distances reported previously for compounds containing Cu—Br anions (Luque et al., 2001; Raithby et al., 2000; Haddad et al., 2006). The bond angles are present in two distinguished sets. The first contains four angles in the range 98.36 (6) - 101.27 (6)° which are much lower than the other set which contains two angles 129.74 (7) and 132.23 (7)°. Accordingly the geometry of CuBr42- anion is an intermediate between regular tetrahedral (Td) and square planar (D4h) (Table 2).
The cation bond lengths and angles are within expected range (Allen et al. 1987), with the cations (type A contains N1 and type B contains N8) being of course planar.
In the structure (Fig. 2), each anion is connected nonsymmetrically to four cations interacting via N—H···Br and HN—H···Br hydrogen bonding, Table 3, forming chains of the ladder type run approximately parallel to the crystallographic b-axis. The cations type A represnt the rungs while both cations type B and anions represent the rails of a ladder (Fig. 3).
There are no Br···Br interactions were observed (shortest being 4.6651 (17) Å). Cations π···π stacking (in a-ditrection) is observed, with significant ones being X1A···X1A [2 - x, 2 - y, 2 - z] and X1B···X1B [- x, 1 - y, 1 - z] of 3.69 (9) and 3.71 (1), respectively. Also Br···aryl interactions present by the unusually short Br(1) [-x, 2 - y, 1 - z]···X1B contact of 3.72 (2) Å and the longer Br(3)···X1A of 4.04 (6) Å contact.