organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1,1′-Azinodi­ethyl­­idyne)diphenol

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Institute of Supervision and Inspection of Product Quality, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 18 April 2008; accepted 21 April 2008; online 26 April 2008)

In the title mol­ecule, C16H16N2O2, the C—N bond lengths are 1.295 (5) and 1.300 (5) Å, which suggests that they are double bonds. The structure is stabilized by intra­molecular O—H⋯N and C—H⋯N, and inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For related literature, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2

  • Mr = 268.31

  • Orthorhombic, P 21 21 21

  • a = 6.3358 (8) Å

  • b = 13.5625 (10) Å

  • c = 15.9956 (15) Å

  • V = 1374.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.38 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.988

  • 7170 measured reflections

  • 1422 independent reflections

  • 849 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.128

  • S = 1.08

  • 1422 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.80 2.529 (5) 146
O2—H2⋯N2 0.82 1.80 2.529 (4) 147
C1—H1A⋯N2 0.96 2.32 2.739 (5) 106
C5—H5⋯O2i 0.93 2.59 3.403 (6) 147
C9—H9A⋯N1 0.96 2.30 2.724 (6) 106
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the coordination chemistry of Schiffbase ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C2—N1 [1.295 (5) Å], and C10—N2 [1.300 (5) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The structure is stabilized by intramolecular O—H···N and C—H···N, and intermolecular C—H···O hydrogen bonding interactions.

Related literature top

For related literature, see: Tai et al. (2003).

Experimental top

2 mmol of 2'-Hhydroxyacetophenone (2 mmol) was added to a solution of hydrazide (1 mmol) in 10 ml of 95% ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 58%). Clear blocks of (I) were obtained by evaporation from a methanol solution after 6 days.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C, hydroxyl O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
2,2'-(1,1'-Azinodiethylidyne)diphenol top
Crystal data top
C16H16N2O2F(000) = 568
Mr = 268.31Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1489 reflections
a = 6.3358 (8) Åθ = 2.9–20.4°
b = 13.5625 (10) ŵ = 0.09 mm1
c = 15.9956 (15) ÅT = 298 K
V = 1374.5 (2) Å3Block, colourless
Z = 40.38 × 0.15 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1422 independent reflections
Radiation source: fine-focus sealed tube849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.968, Tmax = 0.988k = 1613
7170 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4138P]
where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H16N2O2V = 1374.5 (2) Å3
Mr = 268.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3358 (8) ŵ = 0.09 mm1
b = 13.5625 (10) ÅT = 298 K
c = 15.9956 (15) Å0.38 × 0.15 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
849 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.044
7170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1422 reflectionsΔρmin = 0.14 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5862 (6)0.4828 (2)0.5963 (2)0.0489 (9)
N20.4075 (6)0.4685 (2)0.6456 (2)0.0486 (9)
O10.8168 (6)0.4367 (2)0.47328 (19)0.0824 (11)
H10.71740.43200.50590.124*
O20.1570 (5)0.5228 (2)0.75976 (17)0.0670 (9)
H20.26020.52590.72900.101*
C10.6514 (8)0.6288 (3)0.6846 (3)0.0719 (14)
H1A0.50900.61830.70310.108*
H1B0.66650.69530.66490.108*
H1C0.74680.61770.73020.108*
C20.7010 (7)0.5586 (3)0.6150 (2)0.0472 (10)
C30.8877 (7)0.5753 (3)0.5630 (2)0.0487 (11)
C40.9357 (8)0.5152 (3)0.4941 (3)0.0605 (13)
C51.1111 (9)0.5351 (4)0.4453 (3)0.0779 (16)
H51.14170.49510.39960.093*
C61.2395 (9)0.6130 (4)0.4636 (3)0.0778 (15)
H61.35700.62540.43040.093*
C71.1973 (8)0.6727 (4)0.5301 (3)0.0698 (14)
H71.28480.72590.54220.084*
C81.0243 (7)0.6535 (3)0.5790 (3)0.0589 (12)
H80.99730.69420.62460.071*
C90.3515 (10)0.3201 (3)0.5599 (3)0.0861 (17)
H9A0.45460.34970.52370.129*
H9B0.22700.30460.52830.129*
H9C0.40840.26080.58360.129*
C100.2963 (7)0.3905 (3)0.6284 (2)0.0502 (11)
C110.1087 (7)0.3741 (3)0.6796 (3)0.0500 (11)
C120.0460 (7)0.4402 (3)0.7423 (3)0.0542 (11)
C130.1329 (8)0.4228 (4)0.7893 (3)0.0651 (13)
H130.17050.46690.83120.078*
C140.2557 (9)0.3416 (4)0.7750 (3)0.0766 (15)
H140.37690.33100.80650.092*
C150.1990 (9)0.2764 (3)0.7141 (3)0.0762 (15)
H150.28240.22120.70410.091*
C160.0201 (8)0.2914 (3)0.6674 (3)0.0668 (13)
H160.01650.24560.62670.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.044 (2)0.052 (2)0.051 (2)0.0052 (18)0.0000 (18)0.0005 (16)
N20.046 (2)0.047 (2)0.053 (2)0.0031 (18)0.0032 (18)0.0000 (16)
O10.093 (3)0.084 (2)0.070 (2)0.013 (2)0.021 (2)0.0175 (17)
O20.070 (2)0.0691 (19)0.0615 (19)0.0107 (19)0.0074 (18)0.0083 (15)
C10.062 (3)0.067 (3)0.087 (3)0.006 (3)0.012 (3)0.017 (3)
C20.049 (3)0.044 (2)0.049 (2)0.010 (2)0.004 (2)0.0004 (18)
C30.048 (3)0.052 (2)0.047 (2)0.009 (2)0.005 (2)0.006 (2)
C40.068 (4)0.062 (3)0.052 (3)0.001 (3)0.001 (3)0.005 (2)
C50.087 (4)0.092 (4)0.054 (3)0.005 (4)0.020 (3)0.004 (3)
C60.063 (3)0.094 (4)0.076 (4)0.000 (3)0.019 (3)0.019 (3)
C70.056 (3)0.076 (3)0.076 (3)0.003 (3)0.003 (3)0.017 (3)
C80.053 (3)0.063 (3)0.061 (3)0.003 (3)0.004 (3)0.005 (2)
C90.079 (4)0.072 (3)0.107 (4)0.013 (3)0.020 (3)0.035 (3)
C100.045 (3)0.047 (2)0.058 (3)0.004 (2)0.004 (2)0.002 (2)
C110.049 (3)0.045 (2)0.056 (3)0.001 (2)0.009 (2)0.006 (2)
C120.055 (3)0.054 (3)0.054 (3)0.001 (2)0.006 (2)0.015 (2)
C130.063 (3)0.070 (3)0.063 (3)0.005 (3)0.002 (3)0.015 (3)
C140.068 (3)0.081 (3)0.081 (4)0.002 (3)0.009 (3)0.031 (3)
C150.067 (4)0.068 (3)0.094 (4)0.019 (3)0.004 (3)0.023 (3)
C160.068 (3)0.057 (3)0.075 (3)0.005 (3)0.009 (3)0.003 (2)
Geometric parameters (Å, º) top
N1—C21.295 (5)C7—C81.371 (6)
N1—N21.394 (4)C7—H70.9300
N2—C101.300 (5)C8—H80.9300
O1—C41.346 (5)C9—C101.495 (5)
O1—H10.8200C9—H9A0.9600
O2—C121.352 (5)C9—H9B0.9600
O2—H20.8200C9—H9C0.9600
C1—C21.497 (5)C10—C111.460 (6)
C1—H1A0.9600C11—C161.401 (5)
C1—H1B0.9600C11—C121.403 (6)
C1—H1C0.9600C12—C131.380 (6)
C2—C31.464 (5)C13—C141.368 (6)
C3—C81.392 (5)C13—H130.9300
C3—C41.405 (6)C14—C151.364 (6)
C4—C51.385 (7)C14—H140.9300
C5—C61.365 (7)C15—C161.372 (7)
C5—H50.9300C15—H150.9300
C6—C71.364 (6)C16—H160.9300
C6—H60.9300
C2—N1—N2115.8 (3)C7—C8—H8118.8
C10—N2—N1115.7 (3)C3—C8—H8118.8
C4—O1—H1109.5C10—C9—H9A109.5
C12—O2—H2109.5C10—C9—H9B109.5
C2—C1—H1A109.5H9A—C9—H9B109.5
C2—C1—H1B109.5C10—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
C2—C1—H1C109.5H9B—C9—H9C109.5
H1A—C1—H1C109.5N2—C10—C11116.5 (4)
H1B—C1—H1C109.5N2—C10—C9123.2 (4)
N1—C2—C3116.5 (4)C11—C10—C9120.3 (4)
N1—C2—C1124.0 (4)C16—C11—C12116.5 (4)
C3—C2—C1119.6 (4)C16—C11—C10121.2 (4)
C8—C3—C4116.8 (4)C12—C11—C10122.3 (4)
C8—C3—C2121.1 (4)O2—C12—C13117.1 (4)
C4—C3—C2122.1 (4)O2—C12—C11122.0 (4)
O1—C4—C5117.6 (4)C13—C12—C11120.9 (4)
O1—C4—C3122.1 (4)C14—C13—C12120.9 (5)
C5—C4—C3120.2 (5)C14—C13—H13119.5
C6—C5—C4120.5 (5)C12—C13—H13119.5
C6—C5—H5119.7C15—C14—C13119.5 (5)
C4—C5—H5119.7C15—C14—H14120.3
C7—C6—C5120.7 (5)C13—C14—H14120.3
C7—C6—H6119.7C14—C15—C16120.6 (5)
C5—C6—H6119.7C14—C15—H15119.7
C6—C7—C8119.3 (5)C16—C15—H15119.7
C6—C7—H7120.4C15—C16—C11121.7 (5)
C8—C7—H7120.4C15—C16—H16119.2
C7—C8—C3122.5 (5)C11—C16—H16119.2
C2—N1—N2—C10177.9 (4)N1—N2—C10—C11179.9 (3)
N2—N1—C2—C3179.2 (3)N1—N2—C10—C90.6 (6)
N2—N1—C2—C10.2 (5)N2—C10—C11—C16178.7 (4)
N1—C2—C3—C8178.6 (4)C9—C10—C11—C161.7 (6)
C1—C2—C3—C82.3 (5)N2—C10—C11—C122.2 (5)
N1—C2—C3—C42.7 (5)C9—C10—C11—C12177.4 (4)
C1—C2—C3—C4176.4 (4)C16—C11—C12—O2179.8 (4)
C8—C3—C4—O1179.0 (4)C10—C11—C12—O20.7 (6)
C2—C3—C4—O12.3 (6)C16—C11—C12—C130.5 (6)
C8—C3—C4—C50.3 (6)C10—C11—C12—C13179.6 (4)
C2—C3—C4—C5178.4 (4)O2—C12—C13—C14179.2 (4)
O1—C4—C5—C6179.2 (4)C11—C12—C13—C141.1 (6)
C3—C4—C5—C60.1 (7)C12—C13—C14—C150.8 (7)
C4—C5—C6—C70.1 (8)C13—C14—C15—C160.2 (7)
C5—C6—C7—C80.3 (7)C14—C15—C16—C110.8 (7)
C6—C7—C8—C30.6 (6)C12—C11—C16—C150.5 (6)
C4—C3—C8—C70.6 (6)C10—C11—C16—C15178.7 (4)
C2—C3—C8—C7178.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.802.529 (5)146
O2—H2···N20.821.802.529 (4)147
C1—H1A···N20.962.322.739 (5)106
C5—H5···O2i0.932.593.403 (6)147
C9—H9A···N10.962.302.724 (6)106
Symmetry code: (i) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O2
Mr268.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.3358 (8), 13.5625 (10), 15.9956 (15)
V3)1374.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7170, 1422, 849
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.08
No. of reflections1422
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.802.529 (5)146
O2—H2···N20.821.802.529 (4)147
C1—H1A···N20.962.322.739 (5)106
C5—H5···O2i0.932.593.403 (6)147
C9—H9A···N10.962.302.724 (6)106
Symmetry code: (i) x+3/2, y+1, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds