organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-2-Nitrimino-1,3-diazepane-4-carboxylic acid

aMolecular Structure Research Center, National Academy of Sciences RA, Azatutyan ave. 26, 375014 Yerevan, Republic of Armenia
*Correspondence e-mail: harkar@nfsat.am

(Received 31 March 2008; accepted 24 April 2008; online 30 April 2008)

The cyclic form of L-nitro­arginine, C6H10N4O4, crystallizes with two independent mol­ecules in the asymmetric unit. According to the geometrical parameters, similar in both mol­ecules, the structure corresponds to that of L-2-nitrimino-1,3-diazepane-4-carboxylic acid; there are, however, conformational differences between the independent molecules, one of them being close to a twisted chair while the other might be described as a rather flattened boat. All six active H atoms in the two molecules are involved in hydrogen bonds, two of which are intra­molecular and four inter­molecular, forming an infinite chain of mol­ecules along the b axis.

Related literature

For the crystal structures of some analogs of the title compound, see: Apreyan et al. (2007[Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2007). J. Mol. Struct. 875, 272-281.], 2008[Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008). J. Mol. Struct. 874, 187-193.]); Karapetyan et al. (2007[Karapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct. 831, 90-96.]); Petrosyan et al. (2005[Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, 275, e1927-e1933.]). For related literature, see: Paul et al. (1961[Paul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem. 26, 3347-3350.]); Apreyan & Petrosyan (2008[Apreyan, R. A. & Petrosyan, A. M. (2008). In preparation. ]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N4O4

  • Mr = 202.18

  • Orthorhombic, P 21 21 21

  • a = 6.9787 (14) Å

  • b = 15.233 (3) Å

  • c = 16.637 (3) Å

  • V = 1768.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.20 × 0.17 × 0.14 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 13278 measured reflections

  • 2211 independent reflections

  • 1509 reflections with I > 2σ(I)

  • Rint = 0.046

  • 3 standard reflections every 400 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.06

  • 2211 reflections

  • 255 parameters

  • H-atom parameters constraned

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H10⋯O6 0.86 2.27 2.938 (4) 134
N6—H20⋯O2i 0.86 2.17 2.988 (4) 158
N1—H3⋯O3 0.86 2.05 2.591 (4) 121
N5—H13⋯O7 0.86 1.92 2.571 (4) 132
O5—H11⋯N3 0.82 1.88 2.690 (4) 172
O1—H1⋯N7ii 0.82 1.88 2.685 (3) 169
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: CAD-4 Manual (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Manual; data reduction: HELENA (Spek, (1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The salts of the L-arginine have been intensively investigated as non-linear optical materials [Petrosyan et al.(2005) and Karapetyan et al.(2007)]. Recently, reports about L-nitroarginine [Apreyan et al.(2008)] and its crystalline salts [Apreyan et al.(2007)] (a promising line of non-linear optical materials) have appeared.

We present herein a structural study of the cyclic form of L-nitroarginine, C6H10N4O4 (I), which crystallizes with two independent molecules in the unit cell. The molecule was reported for the first time by (Paul et al., 1961) where it was suggested to be 2-nitro-4-carboxy-1,3- -diazacycloheptane, on the basis of chemical properties and IR spectra. According to the present single-crystal X-ray diffraction results the L-2-nitrimino-1,3-diazepane-4-carboxylic acid (L-NIDCA) form is suggested instead. A view of the H-bonded pair of crystallographically independent molecules is shown in Fig. 1. The values of bond distances and angles are in agreement with common accepted values which lead to the proposed structural interpretation. In spite of the metric similarities there are conformational differences between the independent moieties, one of them being close to a twist-chair while the other may be described as an essentially flattened boat. All six active H atoms in the crystal are involved in hydrogen bonding (Table 1), two of them being intra- and four inter-molecular, linking crystallographically independent units and by way of which an infinite chain of molecules along the b axis is formed (Fig. 2).

Related literature top

For the crystal structures of some analogs of the title compound, see: Apreyan et al. (2007, 2008); Karapetyan et al. (2007); Petrosyan et al. (2005). For related literature, see: Paul et al. (1961); Apreyan & Petrosyan (2008).

Experimental top

The obtainement of crystals of the title compound consisted of a two step process.First of all, the potassium salt of (I) was obtained by the reaction of L-nitroarginine with KOH. Afterwards, by the interaction of this potassium salt with HBF4 and further separation of the poorly soluble KBF4 salt, single crystals of (I) were obtained by slow evaporation at room temperature. The compound obtained is more correctly named L-2-nitrimino-1,3-diazepane-4-carboxylic acid (L-NIDCA). Details of the obtainment of L-NIDCA and L-NIDCA.H2O, as well as vibrational spectra, thermal properties and SHG will be reported soon separately [Apreyan and Petrosyan, 2008].

Refinement top

In spite of a pronounced centrosymmetric statistics of intensities, non-centrosymmetric P2(1)2(1)2(1) was chosen as the space group, on the basis of second harmonic generation. The statistics was latter justified by the structure resolution, which presents a strong pseudo centrosymmetric character. All the H atoms were placed in geometrically calculated positions and included in the refinement in a riding model approximation, with Uiso(H): 1.5Ueq(of hydroxyl O atoms) and 1.2Ueq (other carrier atoms). The positional as well as anisotropic thermal parameters of non-hydrogen atoms were refined without restraints. In the absense of any significant anomalous effect, Friedel pairs were merged.

Computing details top

Data collection: CAD-4 Manual (Enraf–Nonius, 1988); cell refinement: CAD-4 Manual (Enraf–Nonius, 1988); data reduction: HELENA (Spek, (1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the crystallographically independent molecules paired via intermolecular H-bonds showing atomic numbering and displacement ellipsoids at the 50% probability.
[Figure 2] Fig. 2. Packing of the molecules (without non-active H atoms). For clarity the non-hydrogen atoms of the crystallographically independent molecules participating in H-bonds are numbered only.
L-2-Nitrimino-1,3-diazepane-4-carboxylic acid top
Crystal data top
C6H10N4O4F(000) = 848
Mr = 202.18Dx = 1.519 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24 reflections
a = 6.9787 (14) Åθ = 14–16°
b = 15.233 (3) ŵ = 0.13 mm1
c = 16.637 (3) ÅT = 293 K
V = 1768.6 (6) Å3Block, colourless
Z = 80.20 × 0.17 × 0.14 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.5°
Graphite monochromatorh = 78
ω/2θ scansk = 1919
13278 measured reflectionsl = 2121
2211 independent reflections3 standard reflections every 400 reflections
1509 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.5039P]
where P = (Fo2 + 2Fc2)/3
2211 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H10N4O4V = 1768.6 (6) Å3
Mr = 202.18Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 6.9787 (14) ŵ = 0.13 mm1
b = 15.233 (3) ÅT = 293 K
c = 16.637 (3) Å0.20 × 0.17 × 0.14 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
13278 measured reflections3 standard reflections every 400 reflections
2211 independent reflections intensity decay: none
1509 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2211 reflectionsΔρmin = 0.21 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7754 (5)0.88281 (14)0.60814 (15)0.0563 (8)
H10.77960.93370.59220.085*
O20.8669 (4)0.85314 (15)0.48298 (16)0.0472 (7)
O30.8340 (4)0.67954 (15)0.34868 (15)0.0530 (8)
O40.7646 (6)0.55602 (18)0.29427 (15)0.0723 (10)
O50.8340 (6)0.38278 (15)0.38570 (16)0.0659 (10)
H110.82100.43360.40090.099*
O60.8143 (4)0.35371 (15)0.51572 (15)0.0442 (7)
O70.8020 (5)0.17963 (15)0.64914 (14)0.0525 (8)
O80.7484 (6)0.05314 (16)0.70190 (15)0.0632 (9)
N10.8515 (4)0.68230 (16)0.50423 (17)0.0333 (7)
H30.90300.71030.46490.040*
N20.8213 (5)0.54128 (18)0.55682 (17)0.0392 (8)
H100.75180.49520.55060.047*
N30.8130 (5)0.55431 (18)0.42317 (17)0.0384 (8)
N40.8015 (5)0.59993 (18)0.35350 (18)0.0426 (8)
N50.8587 (4)0.18391 (17)0.49647 (17)0.0366 (7)
H130.86000.21320.54070.044*
N60.8668 (5)0.04394 (18)0.44140 (17)0.0393 (7)
H200.83440.00990.44910.047*
N70.8136 (4)0.05420 (18)0.57390 (16)0.0356 (7)
N80.7869 (5)0.09867 (18)0.64405 (18)0.0405 (7)
C10.8179 (5)0.8301 (2)0.5493 (2)0.0348 (9)
C20.7977 (5)0.73407 (19)0.57448 (18)0.0313 (8)
H20.66190.72300.58540.038*
C30.9090 (6)0.7139 (2)0.6508 (2)0.0442 (9)
H51.04500.71330.63880.053*
H40.88570.75980.69000.053*
C40.8511 (6)0.6259 (2)0.6862 (2)0.0429 (9)
H60.90560.62020.73960.052*
H70.71280.62360.69120.052*
C50.9179 (6)0.5504 (2)0.6348 (2)0.0428 (9)
H81.05420.55710.62530.051*
H90.90000.49640.66490.051*
C60.8289 (5)0.5961 (2)0.4948 (2)0.0313 (8)
C70.8343 (5)0.3309 (2)0.4473 (2)0.0343 (8)
C80.8689 (5)0.2356 (2)0.42267 (19)0.0336 (8)
H120.99920.23100.40110.040*
C90.7300 (6)0.2026 (2)0.3592 (2)0.0455 (9)
H150.61010.18700.38490.055*
H140.70390.24960.32140.055*
C100.8042 (6)0.1241 (2)0.3135 (2)0.0483 (10)
H170.69590.08930.29550.058*
H160.87160.14460.26610.058*
C110.9367 (6)0.0661 (2)0.36141 (19)0.0437 (9)
H190.95780.01220.33170.052*
H181.05940.09550.36670.052*
C120.8479 (5)0.09769 (19)0.5036 (2)0.0306 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.107 (2)0.0200 (12)0.0418 (15)0.0005 (15)0.0200 (17)0.0027 (11)
O20.0777 (19)0.0213 (11)0.0427 (15)0.0003 (12)0.0161 (14)0.0023 (11)
O30.093 (2)0.0271 (13)0.0389 (15)0.0039 (13)0.0023 (15)0.0058 (12)
O40.137 (3)0.0472 (18)0.0325 (15)0.009 (2)0.009 (2)0.0075 (14)
O50.137 (3)0.0214 (13)0.0387 (15)0.0028 (16)0.0074 (17)0.0042 (11)
O60.0735 (18)0.0234 (12)0.0357 (13)0.0021 (12)0.0036 (13)0.0026 (11)
O70.096 (2)0.0264 (12)0.0353 (14)0.0023 (14)0.0031 (15)0.0035 (12)
O80.115 (3)0.0393 (15)0.0347 (15)0.0006 (19)0.0091 (18)0.0087 (13)
N10.0498 (18)0.0193 (13)0.0307 (16)0.0017 (13)0.0056 (14)0.0026 (13)
N20.064 (2)0.0215 (13)0.0319 (15)0.0086 (13)0.0034 (15)0.0008 (13)
N30.062 (2)0.0205 (14)0.0325 (16)0.0005 (14)0.0049 (15)0.0004 (13)
N40.067 (2)0.0277 (14)0.0334 (17)0.0067 (15)0.0013 (17)0.0016 (15)
N50.063 (2)0.0188 (13)0.0278 (16)0.0042 (14)0.0032 (15)0.0005 (13)
N60.064 (2)0.0198 (13)0.0339 (16)0.0009 (14)0.0020 (15)0.0001 (13)
N70.0563 (19)0.0212 (14)0.0294 (15)0.0001 (13)0.0012 (15)0.0011 (12)
N80.063 (2)0.0258 (14)0.0332 (17)0.0007 (14)0.0005 (17)0.0020 (14)
C10.042 (2)0.0233 (18)0.039 (2)0.0016 (14)0.0035 (17)0.0020 (17)
C20.0437 (19)0.0193 (14)0.0310 (17)0.0004 (14)0.0016 (16)0.0015 (13)
C30.063 (2)0.0331 (16)0.0363 (18)0.0035 (17)0.0063 (19)0.0031 (14)
C40.067 (2)0.0336 (18)0.0278 (18)0.0030 (17)0.0058 (17)0.0015 (15)
C50.061 (2)0.0317 (17)0.036 (2)0.0055 (18)0.0003 (19)0.0027 (15)
C60.037 (2)0.0225 (16)0.0344 (19)0.0017 (13)0.0061 (15)0.0002 (15)
C70.050 (2)0.0197 (17)0.0335 (19)0.0037 (14)0.0001 (16)0.0014 (15)
C80.046 (2)0.0205 (14)0.0345 (18)0.0019 (14)0.0019 (16)0.0002 (13)
C90.061 (2)0.0350 (17)0.0401 (19)0.0117 (17)0.0133 (19)0.0061 (15)
C100.078 (3)0.0290 (18)0.038 (2)0.0057 (18)0.006 (2)0.0030 (16)
C110.069 (3)0.0296 (17)0.0326 (19)0.0080 (17)0.0094 (19)0.0046 (15)
C120.041 (2)0.0198 (15)0.0309 (18)0.0005 (13)0.0014 (15)0.0023 (14)
Geometric parameters (Å, º) top
O1—C11.300 (4)N7—N81.362 (4)
O1—H10.8200N7—C121.365 (4)
O2—C11.207 (4)C1—C21.528 (4)
O3—N41.236 (3)C2—C31.519 (4)
O4—N41.219 (4)C2—H20.9800
O5—C71.294 (4)C3—C41.519 (5)
O5—H110.8200C3—H50.9700
O6—C71.199 (4)C3—H40.9700
O7—N81.241 (3)C4—C51.507 (5)
O8—N81.216 (3)C4—H60.9700
N1—C61.332 (4)C4—H70.9700
N1—C21.459 (4)C5—H80.9700
N1—H30.8600C5—H90.9700
N2—C61.328 (4)C7—C81.527 (4)
N2—C51.469 (4)C8—C91.520 (5)
N2—H100.8600C8—H120.9800
N3—N41.354 (4)C9—C101.508 (5)
N3—C61.356 (4)C9—H150.9700
N5—C121.321 (4)C9—H140.9700
N5—C81.460 (4)C10—C111.506 (5)
N5—H130.8600C10—H170.9700
N6—C121.327 (4)C10—H160.9700
N6—C111.457 (4)C11—H190.9700
N6—H200.8600C11—H180.9700
C1—O1—H1109.5C3—C4—H7109.2
C7—O5—H11109.5H6—C4—H7107.9
C6—N1—C2126.6 (3)N2—C5—C4115.5 (3)
C6—N1—H3116.7N2—C5—H8108.4
C2—N1—H3116.7C4—C5—H8108.4
C6—N2—C5127.5 (3)N2—C5—H9108.4
C6—N2—H10116.3C4—C5—H9108.4
C5—N2—H10116.3H8—C5—H9107.5
N4—N3—C6121.1 (3)N2—C6—N1122.2 (3)
O4—N4—O3121.6 (3)N2—C6—N3112.6 (3)
O4—N4—N3115.0 (3)N1—C6—N3125.2 (3)
O3—N4—N3123.2 (3)O6—C7—O5125.1 (3)
C12—N5—C8127.9 (3)O6—C7—C8123.3 (3)
C12—N5—H13116.0O5—C7—C8111.6 (3)
C8—N5—H13116.0N5—C8—C9112.0 (3)
C12—N6—C11127.1 (3)N5—C8—C7106.2 (3)
C12—N6—H20116.5C9—C8—C7113.6 (3)
C11—N6—H20116.5N5—C8—H12108.3
N8—N7—C12121.1 (3)C9—C8—H12108.3
O8—N8—O7122.1 (3)C7—C8—H12108.3
O8—N8—N7115.1 (3)C10—C9—C8113.2 (3)
O7—N8—N7122.8 (3)C10—C9—H15108.9
O2—C1—O1125.0 (3)C8—C9—H15108.9
O2—C1—C2123.7 (3)C10—C9—H14108.9
O1—C1—C2111.4 (3)C8—C9—H14108.9
N1—C2—C3115.4 (3)H15—C9—H14107.8
N1—C2—C1105.9 (3)C11—C10—C9114.1 (3)
C3—C2—C1112.0 (3)C11—C10—H17108.7
N1—C2—H2107.7C9—C10—H17108.7
C3—C2—H2107.7C11—C10—H16108.7
C1—C2—H2107.7C9—C10—H16108.7
C4—C3—C2111.5 (3)H17—C10—H16107.6
C4—C3—H5109.3N6—C11—C10114.5 (3)
C2—C3—H5109.3N6—C11—H19108.6
C4—C3—H4109.3C10—C11—H19108.6
C2—C3—H4109.3N6—C11—H18108.6
H5—C3—H4108.0C10—C11—H18108.6
C5—C4—C3111.9 (3)H19—C11—H18107.6
C5—C4—H6109.2N5—C12—N6122.5 (3)
C3—C4—H6109.2N5—C12—N7124.8 (3)
C5—C4—H7109.2N6—C12—N7112.7 (3)
C6—N3—N4—O4171.5 (4)N4—N3—C6—N2174.4 (3)
C6—N3—N4—O311.6 (6)N4—N3—C6—N16.2 (5)
C12—N7—N8—O8176.6 (4)C12—N5—C8—C943.1 (5)
C12—N7—N8—O73.9 (6)C12—N5—C8—C7167.7 (4)
C6—N1—C2—C365.9 (5)O6—C7—C8—N53.5 (5)
C6—N1—C2—C1169.6 (3)O5—C7—C8—N5177.9 (3)
O2—C1—C2—N10.9 (5)O6—C7—C8—C9127.1 (4)
O1—C1—C2—N1179.2 (3)O5—C7—C8—C954.3 (4)
O2—C1—C2—C3127.5 (4)N5—C8—C9—C1080.9 (4)
O1—C1—C2—C352.6 (4)C7—C8—C9—C10158.7 (3)
N1—C2—C3—C472.3 (4)C8—C9—C10—C1130.0 (5)
C1—C2—C3—C4166.4 (3)C12—N6—C11—C1069.0 (5)
C2—C3—C4—C569.8 (4)C9—C10—C11—N647.6 (5)
C6—N2—C5—C466.1 (5)C8—N5—C12—N68.0 (6)
C3—C4—C5—N269.2 (4)C8—N5—C12—N7171.0 (3)
C5—N2—C6—N130.9 (6)C11—N6—C12—N512.6 (6)
C5—N2—C6—N3148.5 (3)C11—N6—C12—N7168.3 (3)
C2—N1—C6—N225.9 (5)N8—N7—C12—N50.1 (5)
C2—N1—C6—N3154.8 (3)N8—N7—C12—N6178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O60.862.272.938 (4)134
N6—H20···O2i0.862.172.988 (4)158
N1—H3···O20.862.212.629 (3)110
N1—H3···O30.862.052.591 (4)121
N5—H13···O60.862.202.625 (4)110
N5—H13···O70.861.922.571 (4)132
O5—H11···N30.821.882.690 (4)172
O5—H11···O40.822.603.084 (4)119
O1—H1···N7ii0.821.882.685 (3)169
O1—H1···O8ii0.822.593.033 (3)116
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H10N4O4
Mr202.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9787 (14), 15.233 (3), 16.637 (3)
V3)1768.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.17 × 0.14
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13278, 2211, 1509
Rint0.046
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.06
No. of reflections2211
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CAD-4 Manual (Enraf–Nonius, 1988), HELENA (Spek, (1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O60.862.272.938 (4)134.2
N6—H20···O2i0.862.172.988 (4)157.9
N1—H3···O30.862.052.591 (4)120.5
N5—H13···O70.861.922.571 (4)131.6
O5—H11···N30.821.882.690 (4)171.9
O1—H1···N7ii0.821.882.685 (3)169.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

The author expresses his thanks to Dr R. A. Apreyan and Dr A. M. Petrosyan for providing the crystals and for valuable discussion of the results.

References

First citationApreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2007). J. Mol. Struct. 875, 272–281.  Web of Science CSD CrossRef Google Scholar
First citationApreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008). J. Mol. Struct. 874, 187–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationApreyan, R. A. & Petrosyan, A. M. (2008). In preparation.  Google Scholar
First citationEnraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKarapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct. 831, 90–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem. 26, 3347–3350.  CrossRef Web of Science Google Scholar
First citationPetrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, 275, e1927–e1933.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds