organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazo[1,2-a]pyridine-3-carbaldehyde

aDépartement de Chimie, Faculté des Sciences, BP 717, 60000 Oujda, Morocco, bLaboratory of Mineral Solid and Analytical Chemistry, `LMSAC', Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and cInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 8 April 2008; accepted 21 April 2008; online 26 April 2008)

In the title compound, C14H10N2O, the dihedral angle between the imidazo[1,2-a]pyridine and phenyl rings is 28.61 (4)° The mol­ecules are connected into broad chains parallel to the a axis by weak C—H⋯O and C—H⋯N hydrogen bonds. The linking of the ribbons is provided by ππ stacking inter­actions between neighbouring pyridine rings, with a centroid–centroid distance of 3.7187 (7) Å.

Related literature

For general background, see Anaflous et al. (2008[Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dusek, M. & Fejfarova, K. (2008). Acta Cryst. E64, o926.]) and references therein. For related literature, see: Meth-Cohn & Stanforth (1991[Meth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777-794.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.2

  • Orthorhombic, P b c a

  • a = 13.0640 (3) Å

  • b = 7.4162 (2) Å

  • c = 21.6698 (6) Å

  • V = 2099.48 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.57 × 0.40 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with Sapphire2 CCD detector

  • Absorption correction: none

  • 25795 measured reflections

  • 2196 independent reflections

  • 1305 reflections with I > 3σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.04

  • 2196 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.96 2.50 3.4386 (18) 165
C6—H6⋯O1ii 0.96 2.46 3.1856 (16) 133
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2000 (Petříček et al., 2000[Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: JANA2000.

Supporting information


Comment top

Functionalized imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine systems are of great interest due to their biological activities (Anaflous et al., 2008 and reference herein).

The structure of N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide(I) consists of isolated molecules which packing is shown in Fig. 1. The space conformation of the molecule (Fig. 2) is characterized by the dihedral angle of 28.61 (4) ° between the imidazo[1,2-a]pyridine and the phenyl rings. Weak C—H···N and C—H···O intermolecular hydrogen bonds (Table 1) connect the molecules into chains in the a direction (Fig. 3). The connection between ribbons along b (Fig. 1) is provided by π-π stacking interactions involving neighbouring pyridine rings with centroid-centroid distance 3.7187 (7) Å.

Related literature top

For general background, see Anaflous et al. (2008) and references therein. For related literature, see: Meth-Cohn & Stanforth (1991).

Experimental top

Imidazo[1,2-a]pyridine-2-phenyl-3-carbaldehyde was synthesized according to the method described by Vilsmeier-Haack (Meth-Cohn & Stanforth, 1991) : i.e. to 1.9 g (26 mmol) of DMF cooled at 273 K, containing 4 g (26 mmol) of phosphorus oxychloride (POCl3), was added portionwise to 10 mmole of 2-phenyl imidazo[1,2-a]pyridine. The mixture was heated at 373 K for 1 h. The solution was then neutralized at 273 K with Na2CO3 and extracted with Dichloromethane. The organic layer was dried over sodium sulfate and dichloromethane was removed under reduced pressure. The crude product was purified on silica gel column and imidazo[1,2-a]pyridine-2-phenyl-3-carbaldehyde was obtained in good yield (60%) as a white solid.

Refinement top

All the hydrogens (bonded to C atoms) were discernible in difference Fourier maps but according to standard procedures for organic compounds they were constrained to ideal positions (C-H: 0.96Å). Their isotropic atomic displacement parameters were evaluated as 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2000 (Petříček et al., 2000).

Figures top
[Figure 1] Fig. 1. Packing of of Imidazo[1,2-a]pyridine-2-phenyl-3-carbaldehyde viewed along the b axis. Hydrogen bonds are not indicated.
[Figure 2] Fig. 2. A molecule of the title compound, with 50% displacement ellispoids for non-H atoms.
[Figure 3] Fig. 3. Part of a ribbon along the a axis showing intermolecular hydrogen bonds.
2-Phenylimidazo[1,2-a]pyridine-3-carbaldehyde top
Crystal data top
C14H10N2OF(000) = 928
Mr = 222.2Dx = 1.406 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 8746 reflections
a = 13.0640 (3) Åθ = 2.7–26.5°
b = 7.4162 (2) ŵ = 0.09 mm1
c = 21.6698 (6) ÅT = 120 K
V = 2099.48 (9) Å3Prism, colourless
Z = 80.57 × 0.40 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
1305 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.049
Graphite monochromatorθmax = 26.6°, θmin = 3.1°
Detector resolution: 8.3438 pixels mm-1h = 1616
Rotation method data acquisition using ω scansk = 99
25795 measured reflectionsl = 2727
2196 independent reflections
Refinement top
Refinement on F236 constraints
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.04(Δ/σ)max = 0.007
2196 reflectionsΔρmax = 0.15 e Å3
154 parametersΔρmin = 0.16 e Å3
0 restraints
Crystal data top
C14H10N2OV = 2099.48 (9) Å3
Mr = 222.2Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0640 (3) ŵ = 0.09 mm1
b = 7.4162 (2) ÅT = 120 K
c = 21.6698 (6) Å0.57 × 0.40 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
1305 reflections with I > 3σ(I)
25795 measured reflectionsRint = 0.049
2196 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2196 reflectionsΔρmin = 0.16 e Å3
154 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

All the H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to standard procedures for organic compounds the H atoms bonded to C atoms were constrained to ideal positions. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38579 (8)0.13099 (13)0.06669 (5)0.0227 (3)
N20.22707 (8)0.09004 (13)0.02784 (5)0.0204 (3)
O10.03531 (7)0.19646 (11)0.08623 (4)0.0297 (3)
C10.31590 (10)0.18666 (16)0.10870 (6)0.0208 (4)
C20.33161 (10)0.07295 (16)0.01765 (6)0.0207 (4)
C30.21543 (10)0.16659 (16)0.08658 (6)0.0204 (4)
C40.36597 (11)0.00163 (16)0.03801 (6)0.0235 (4)
C50.29491 (10)0.05736 (17)0.08037 (7)0.0243 (4)
C60.18958 (10)0.03859 (17)0.06861 (6)0.0247 (4)
C70.15617 (10)0.03543 (16)0.01503 (6)0.0236 (4)
C80.35054 (10)0.25310 (16)0.16940 (6)0.0214 (4)
C90.29235 (10)0.23521 (17)0.22302 (7)0.0238 (4)
C100.32855 (11)0.30105 (17)0.27874 (7)0.0274 (5)
C110.42372 (11)0.38290 (17)0.28223 (6)0.0283 (5)
C120.48307 (11)0.39863 (17)0.22959 (6)0.0282 (4)
C130.44708 (10)0.33402 (16)0.17344 (6)0.0242 (4)
C140.11885 (10)0.22273 (16)0.11073 (7)0.0245 (4)
H40.4375430.0144440.0470380.0282*
H50.3189030.1095030.1182460.0292*
H60.1391170.0773510.0979540.0296*
H70.0841110.0488340.0076450.0283*
H90.2267570.1770120.2215550.0286*
H100.2873570.2898670.3152330.0329*
H110.4484330.42850.3209180.0339*
H120.5492590.4544080.2320380.0339*
H130.4890680.3453380.1372920.0291*
H140.1086880.2870150.1486950.0294*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (6)0.0225 (5)0.0249 (6)0.0004 (5)0.0004 (5)0.0017 (5)
N20.0196 (6)0.0177 (5)0.0239 (6)0.0005 (5)0.0001 (5)0.0031 (5)
O10.0200 (6)0.0315 (5)0.0376 (6)0.0000 (4)0.0002 (5)0.0024 (5)
C10.0221 (7)0.0149 (7)0.0255 (8)0.0007 (6)0.0019 (6)0.0052 (6)
C20.0192 (7)0.0170 (6)0.0259 (8)0.0002 (6)0.0015 (6)0.0051 (6)
C30.0211 (7)0.0179 (6)0.0223 (7)0.0008 (6)0.0022 (6)0.0026 (6)
C40.0219 (8)0.0224 (7)0.0263 (8)0.0005 (6)0.0024 (6)0.0027 (6)
C50.0281 (8)0.0201 (7)0.0248 (8)0.0015 (6)0.0020 (6)0.0031 (6)
C60.0245 (8)0.0220 (7)0.0275 (8)0.0044 (6)0.0037 (6)0.0023 (6)
C70.0194 (8)0.0225 (7)0.0289 (8)0.0025 (6)0.0031 (6)0.0043 (6)
C80.0228 (8)0.0155 (6)0.0260 (8)0.0027 (6)0.0010 (6)0.0032 (5)
C90.0216 (8)0.0212 (7)0.0288 (8)0.0003 (6)0.0001 (7)0.0034 (6)
C100.0313 (8)0.0267 (7)0.0242 (8)0.0049 (7)0.0017 (7)0.0034 (6)
C110.0330 (8)0.0255 (7)0.0263 (8)0.0053 (7)0.0057 (7)0.0006 (6)
C120.0266 (8)0.0242 (7)0.0339 (8)0.0021 (6)0.0043 (7)0.0013 (7)
C130.0243 (8)0.0222 (7)0.0263 (8)0.0009 (6)0.0007 (6)0.0032 (6)
C140.0262 (8)0.0201 (7)0.0271 (8)0.0008 (7)0.0032 (7)0.0041 (6)
Geometric parameters (Å, º) top
N1—C11.3537 (16)C6—H60.9600
N1—C21.3475 (16)C7—H70.9600
N2—C21.3893 (16)C8—C91.3949 (19)
N2—C31.4020 (17)C8—C131.3994 (18)
N2—C71.3731 (17)C9—C101.386 (2)
O1—C141.2293 (16)C9—H90.9600
C1—C31.4052 (18)C10—C111.3857 (19)
C1—C81.4758 (18)C10—H100.9600
C2—C41.4008 (18)C11—C121.3840 (19)
C3—C141.4279 (18)C11—H110.9600
C4—C51.3693 (19)C12—C131.3897 (19)
C4—H40.9600C12—H120.9600
C5—C61.4063 (18)C13—H130.9600
C5—H50.9600C14—H140.9600
C6—C71.3564 (19)
C1—N1—C2105.87 (10)N2—C7—H7121.20
C2—N2—C3106.74 (10)C6—C7—H7120.02
C2—N2—C7121.92 (11)C1—C8—C9122.93 (12)
C3—N2—C7131.34 (11)C1—C8—C13118.38 (12)
N1—C1—C3111.62 (11)C9—C8—C13118.67 (12)
N1—C1—C8119.62 (11)C8—C9—C10120.43 (12)
C3—C1—C8128.74 (12)C8—C9—H9120.11
N1—C2—N2111.21 (11)C10—C9—H9119.46
N1—C2—C4129.56 (12)C9—C10—C11120.53 (13)
N2—C2—C4119.21 (11)C9—C10—H10119.74
N2—C3—C1104.54 (11)C11—C10—H10119.73
N2—C3—C14123.14 (12)C10—C11—C12119.65 (13)
C1—C3—C14132.02 (12)C10—C11—H11120.24
C2—C4—C5118.63 (12)C12—C11—H11120.11
C2—C4—H4121.78C11—C12—C13120.19 (12)
C5—C4—H4119.59C11—C12—H12119.70
C4—C5—C6120.80 (13)C13—C12—H12120.11
C4—C5—H5118.26C8—C13—C12120.50 (12)
C6—C5—H5120.94C8—C13—H13120.09
C5—C6—C7120.66 (12)C12—C13—H13119.40
C5—C6—H6121.49O1—C14—C3125.44 (13)
C7—C6—H6117.85O1—C14—H14109.03
N2—C7—C6118.78 (12)C3—C14—H14125.53
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.962.503.4386 (18)165
C6—H6···O1ii0.962.463.1856 (16)133
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.2
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)13.0640 (3), 7.4162 (2), 21.6698 (6)
V3)2099.48 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.57 × 0.40 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
25795, 2196, 1305
Rint0.049
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.04
No. of reflections2196
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR2002 (Burla et al., 2003), JANA2000 (Petříček et al., 2000), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.962.503.4386 (18)165
C6—H6···O1ii0.962.463.1856 (16)133
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

The Grant Agency of the Czech Republic is acknowledged for grant No 202/05/0757

References

First citationAnaflous, A., Albay, H., Benchat, N., El Bali, B., Dusek, M. & Fejfarova, K. (2008). Acta Cryst. E64, o926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationMeth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777–794.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds