organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-1,1′-Bi­naphthalene-2,2′-diyl dicinnamate

aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 26 February 2008; accepted 2 April 2008; online 10 April 2008)

In the title compound, C38H26O4, two cinnamo­yloxy groups are linked in a trans fashion to the two O atoms of optically active (R)-1,10-bi-2-naphthol. The dihedral angle between the mean planes of the two naphthyl groups is 71.8 (1)°. The crystal structure contains inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For related literature, see: Chu et al. (2001[Chu, C. Y., Hwang, D. R., Wang, S. K. & Uang, B. (2001). Chem. Commun. pp. 980-981.]); Goldberg (1980[Goldberg, I. (1980). J. Am. Chem. Soc. 102, 4106-4113.]); Horikoshi et al. (2004[Horikoshi, R., Nambu, C. & Mochi, T. (2004). New J. Chem. 28, 26-33.]); Lee & Lin (2002[Lee, S. J. & Lin, W. B. (2002). J. Am. Chem. Soc. 124, 4554-4555.]); Luo et al. (2002[Luo, Z. B., Liu, Q. Z., Gong, L. Z., Cui, X., Mi, A. Q. & Jiang, Y. Z. (2002). Chem. Commun. pp. 914-915.]); Noyori (2002[Noyori, R. (2002). Angew. Chem. Int. Ed. 41, 2008-2022.]); Pu (1998[Pu, L. (1998). Chem. Rev. 98, 2405-2494.]).

[Scheme 1]

Experimental

Crystal data
  • C38H26O4

  • Mr = 546.59

  • Orthorhombic, P 21 21 21

  • a = 10.3391 (17) Å

  • b = 15.352 (2) Å

  • c = 17.660 (3) Å

  • V = 2803.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.52 × 0.43 × 0.38 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.969

  • 27455 measured reflections

  • 2894 independent reflections

  • 2753 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.143

  • S = 1.02

  • 2894 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1 0.93 2.38 2.736 (3) 103
C32—H32A⋯O4 0.93 2.49 2.833 (4) 102
C11—C11A⋯Cg1i 0.93 2.85 3.746 (3) 162
C2—H2ACg2ii 0.93 2.74 3.507 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Optically active 1,10-bi-2-naphthol (BINOL) derivatives have been used successfully in asymmetric catalysis, molecular recognition and optical materials (Pu, 1998; Chu et al., 2001; Luo et al., 2002; Lee & Lin, 2002; Noyori, 2002). Their success is due to the fact that the axial chirality of the ligands can be well expressed in the steric environment of the active sites, and the chiral configuration of BINOL molecules is known to be stable at high temperature over extended periods of time. Thus, BINOL may be used as a preferred starting material or auxiliary for the synthesis of homochiral functional supramolecular complexes (Horikoshi et al., 2004). Here we report the synthesis and crystal structure of the homochiral title compound.

The compound is composed of two cinnamoyloxy units linked in a trans fashion to the two O atoms (2,2'-) of the optically active (R)-BINOL (Fig. 1). The bond distances C6—O1 and C16—O3 are 1.399 (3) and 1.403 (4) Å, respectively. The separation between atoms O1 and O3 is 4.230 (3) Å, which is longer than that reported in other 2,2'-O-substituted complexes (Goldberg, 1980). Considerable twisting between the two naphthyl groups in the compound produces a dihedral angle 71.8 (1)°, much less than the angle of 101.7° found in (R)-BINOL itself. The naphthyl groups are also highly twisted with respect to their covalently linked phenyl groups, with dihedral angles of 28.6 (1) and 74.2 (1)°, respectively. These twists may be ascribed to steric repulsion, resulting in the two cinnamoyloxy units lying on opposite sides of the binaphthyl backbone.

The crystal structure contains C—H···O and C—H···π interactions (Fig. 2 and Table 1). Denoting the centroids of rings [C1–C4, C9, C10], [C11–C14, C19, C20], [C24–C29] and [C33–C38] as Cg1, Cg2, Cg3 and Cg4, respectively, the centroid-centroid distances are: Cg2···Cg1i = 4.749 (2) Å, Cg3···Cg4ii = 4.716 (2) Å [symmetry codes (i): 1/2 + x, 3/2 - y, -z; (ii) 1 + x, y, z].

Related literature top

For related literature, see: Chu et al. (2001); Goldberg (1980); Horikoshi et al. (2004); Lee & Lin (2002); Luo et al. (2002); Noyori (2002); Pu (1998).

Experimental top

To a 50 ml round-bottom flask was added 2.0 g (7.0 mmol) of (R)-1,1'-bi-2-naphthol, 20 ml THF and 6.6 ml pyridine. Then, 5.0 ml trans-cinnamoyl chloride (25.9 mmol) was added in an ice bath. The mixture was stirred at ambient temperature for 24 h, and then poured onto ice. The resulting solid was filtered and washed with hot water. The crude product was soaked with absolute methanol twice to afford the target compound, which was recrystallized from THF/MeOH to afford colourless blocks.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their respective parent C atoms with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, 2231 Friedel pairs have been merged.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the hydrogne-bond packing for compound (I), showing C—H···O and C—H···π contact between molecules as dashed lines.
(R)-1,1'-Binaphthalene-2,2'-diyl dicinnamate top
Crystal data top
C38H26O4F(000) = 1144
Mr = 546.59Dx = 1.295 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 27455 reflections
a = 10.3391 (17) Åθ = 3.0–25.4°
b = 15.352 (2) ŵ = 0.08 mm1
c = 17.660 (3) ÅT = 293 K
V = 2803.1 (8) Å3Block, colourless
Z = 40.52 × 0.43 × 0.38 mm
Data collection top
Siemens SMART CCD
diffractometer
2894 independent reflections
Radiation source: fine-focus sealed tube2753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.936, Tmax = 0.969k = 1818
27455 measured reflectionsl = 1821
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.12P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2894 reflectionsΔρmax = 0.14 e Å3
381 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C38H26O4V = 2803.1 (8) Å3
Mr = 546.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.3391 (17) ŵ = 0.08 mm1
b = 15.352 (2) ÅT = 293 K
c = 17.660 (3) Å0.52 × 0.43 × 0.38 mm
Data collection top
Siemens SMART CCD
diffractometer
2894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2753 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.969Rint = 0.037
27455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2894 reflectionsΔρmin = 0.15 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6025 (3)0.8638 (3)0.04126 (18)0.0563 (8)
H1A0.54420.84450.07770.068*
C20.6764 (3)0.8040 (2)0.00129 (17)0.0535 (8)
H2A0.66710.74480.01140.064*
C30.7621 (3)0.8302 (2)0.05227 (17)0.0477 (7)
H3A0.81000.78890.07870.057*
C40.7794 (3)0.91986 (18)0.06838 (15)0.0380 (6)
C50.8758 (3)0.95009 (17)0.12052 (14)0.0373 (6)
C60.8883 (3)1.03778 (19)0.13057 (15)0.0394 (6)
C70.8090 (3)1.09864 (19)0.09384 (16)0.0450 (7)
H7A0.81871.15780.10370.054*
C80.7186 (3)1.0711 (2)0.04412 (17)0.0454 (7)
H8A0.66611.11160.01980.055*
C90.7027 (3)0.9807 (2)0.02847 (15)0.0421 (6)
C100.6151 (3)0.9511 (2)0.02713 (17)0.0511 (8)
H10A0.56580.99100.05430.061*
C111.3620 (3)0.8723 (3)0.1022 (2)0.0603 (9)
H11A1.44980.87070.09100.072*
C121.2803 (3)0.9291 (2)0.0633 (2)0.0586 (9)
H12A1.31440.96430.02540.070*
C131.1519 (3)0.9341 (2)0.07945 (18)0.0477 (7)
H13A1.09970.97250.05250.057*
C141.0972 (3)0.88157 (17)0.13694 (15)0.0386 (6)
C150.9642 (3)0.88757 (17)0.15923 (15)0.0371 (6)
C160.9218 (3)0.83490 (18)0.21667 (16)0.0399 (6)
C171.0014 (3)0.77282 (19)0.25182 (18)0.0469 (7)
H17A0.96790.73620.28890.056*
C181.1267 (3)0.7668 (2)0.23135 (17)0.0493 (7)
H18A1.17910.72550.25470.059*
C191.1804 (3)0.82197 (18)0.17505 (17)0.0431 (6)
C201.3128 (3)0.8194 (2)0.15641 (19)0.0537 (8)
H20A1.36720.78090.18170.064*
C210.9902 (3)1.05583 (19)0.24984 (17)0.0431 (7)
C221.1166 (3)1.0709 (2)0.28411 (18)0.0475 (7)
H22A1.12091.07530.33660.057*
C231.2250 (3)1.0785 (2)0.24563 (18)0.0498 (8)
H23A1.21831.07850.19310.060*
C241.3556 (3)1.0870 (2)0.27757 (19)0.0518 (8)
C251.4610 (3)1.0705 (3)0.2321 (2)0.0665 (10)
H25A1.44851.05930.18090.080*
C261.5852 (4)1.0704 (3)0.2613 (3)0.0771 (12)
H26A1.65501.05730.23010.093*
C271.6053 (4)1.0894 (3)0.3354 (3)0.0697 (10)
H27A1.68881.08940.35490.084*
C281.5032 (4)1.1086 (3)0.3813 (2)0.0729 (11)
H28A1.51741.12220.43190.087*
C291.3775 (3)1.1078 (3)0.3526 (2)0.0654 (10)
H29A1.30831.12140.38410.078*
C300.7596 (3)0.8456 (2)0.31233 (16)0.0476 (7)
C310.6190 (3)0.8482 (2)0.3223 (2)0.0542 (8)
H31A0.56500.85160.28030.065*
C320.5688 (3)0.8457 (2)0.3910 (2)0.0526 (8)
H32A0.62820.84210.43050.063*
C330.4326 (3)0.8477 (2)0.41384 (18)0.0499 (7)
C340.4012 (3)0.8251 (2)0.4876 (2)0.0591 (8)
H34A0.46650.80790.52050.071*
C350.2755 (4)0.8276 (3)0.5130 (2)0.0668 (10)
H35A0.25620.81290.56280.080*
C360.1783 (4)0.8520 (2)0.4639 (3)0.0681 (10)
H36A0.09290.85280.48040.082*
C370.2072 (4)0.8749 (3)0.3909 (2)0.0661 (10)
H37A0.14130.89170.35810.079*
C380.3337 (4)0.8733 (2)0.3654 (2)0.0616 (9)
H38A0.35260.88930.31590.074*
O10.99096 (19)1.07037 (12)0.17371 (12)0.0440 (5)
O20.8952 (2)1.03255 (17)0.28368 (13)0.0579 (6)
O30.79103 (19)0.84135 (14)0.23723 (11)0.0462 (5)
O40.8384 (2)0.8467 (2)0.36224 (13)0.0664 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (16)0.081 (2)0.0407 (15)0.0084 (17)0.0064 (14)0.0052 (15)
C20.0578 (18)0.0568 (18)0.0458 (16)0.0116 (15)0.0009 (15)0.0114 (14)
C30.0511 (16)0.0498 (16)0.0424 (15)0.0003 (14)0.0014 (14)0.0005 (13)
C40.0367 (14)0.0461 (14)0.0313 (12)0.0033 (11)0.0013 (11)0.0017 (11)
C50.0392 (14)0.0432 (14)0.0294 (12)0.0002 (12)0.0014 (11)0.0024 (11)
C60.0373 (14)0.0422 (14)0.0388 (14)0.0004 (12)0.0023 (12)0.0007 (11)
C70.0480 (16)0.0396 (14)0.0474 (15)0.0043 (12)0.0003 (14)0.0030 (12)
C80.0405 (14)0.0503 (16)0.0455 (15)0.0072 (13)0.0025 (13)0.0047 (12)
C90.0362 (13)0.0574 (17)0.0326 (13)0.0003 (12)0.0034 (11)0.0021 (12)
C100.0425 (16)0.069 (2)0.0416 (16)0.0001 (15)0.0030 (13)0.0034 (14)
C110.0436 (17)0.074 (2)0.063 (2)0.0080 (16)0.0087 (16)0.0057 (18)
C120.0595 (19)0.0611 (19)0.0552 (18)0.0013 (16)0.0182 (16)0.0022 (16)
C130.0498 (17)0.0451 (15)0.0483 (16)0.0018 (13)0.0078 (14)0.0020 (13)
C140.0427 (14)0.0372 (13)0.0359 (13)0.0021 (11)0.0020 (12)0.0041 (11)
C150.0410 (14)0.0359 (12)0.0344 (13)0.0011 (11)0.0034 (11)0.0010 (11)
C160.0394 (14)0.0413 (14)0.0389 (14)0.0002 (11)0.0003 (12)0.0007 (12)
C170.0532 (17)0.0441 (15)0.0432 (15)0.0021 (14)0.0017 (13)0.0067 (12)
C180.0564 (18)0.0435 (15)0.0480 (16)0.0107 (14)0.0074 (15)0.0074 (13)
C190.0436 (15)0.0426 (14)0.0432 (14)0.0049 (12)0.0017 (13)0.0073 (12)
C200.0480 (16)0.0589 (17)0.0542 (18)0.0118 (15)0.0002 (15)0.0009 (15)
C210.0423 (15)0.0469 (15)0.0401 (15)0.0055 (13)0.0008 (12)0.0054 (12)
C220.0436 (16)0.0573 (18)0.0415 (15)0.0022 (13)0.0046 (13)0.0061 (14)
C230.0408 (16)0.0619 (19)0.0466 (16)0.0031 (14)0.0057 (13)0.0020 (14)
C240.0412 (16)0.0604 (18)0.0536 (18)0.0027 (14)0.0008 (14)0.0010 (15)
C250.0461 (18)0.092 (3)0.061 (2)0.0067 (18)0.0005 (16)0.007 (2)
C260.0386 (17)0.107 (3)0.086 (3)0.0026 (19)0.0075 (18)0.011 (3)
C270.0407 (17)0.085 (3)0.084 (3)0.0079 (17)0.0131 (18)0.003 (2)
C280.054 (2)0.100 (3)0.065 (2)0.007 (2)0.0151 (18)0.010 (2)
C290.0471 (17)0.087 (3)0.062 (2)0.0015 (18)0.0020 (16)0.0150 (19)
C300.0485 (16)0.0566 (17)0.0376 (14)0.0043 (14)0.0049 (14)0.0043 (13)
C310.0452 (16)0.069 (2)0.0489 (17)0.0060 (15)0.0009 (14)0.0040 (15)
C320.0481 (16)0.0616 (18)0.0481 (17)0.0003 (15)0.0016 (14)0.0032 (15)
C330.0492 (16)0.0509 (16)0.0495 (17)0.0027 (14)0.0012 (14)0.0018 (14)
C340.0522 (18)0.070 (2)0.0548 (19)0.0006 (17)0.0037 (16)0.0054 (16)
C350.060 (2)0.070 (2)0.070 (2)0.0032 (18)0.0194 (19)0.0031 (18)
C360.054 (2)0.059 (2)0.091 (3)0.0054 (17)0.018 (2)0.0091 (19)
C370.057 (2)0.065 (2)0.077 (2)0.0075 (18)0.0123 (19)0.012 (2)
C380.064 (2)0.065 (2)0.0564 (19)0.0058 (17)0.0020 (17)0.0009 (16)
O10.0415 (10)0.0474 (10)0.0432 (10)0.0053 (9)0.0061 (9)0.0015 (9)
O20.0426 (12)0.0834 (16)0.0478 (12)0.0039 (11)0.0047 (10)0.0116 (11)
O30.0438 (11)0.0553 (11)0.0395 (10)0.0036 (9)0.0010 (9)0.0037 (9)
O40.0557 (13)0.102 (2)0.0418 (12)0.0007 (13)0.0019 (11)0.0032 (12)
Geometric parameters (Å, º) top
C1—C101.371 (5)C21—O21.204 (4)
C1—C21.388 (5)C21—O11.363 (4)
C1—H1A0.930C21—C221.459 (4)
C2—C31.357 (4)C22—C231.316 (4)
C2—H2A0.930C22—H22A0.930
C3—C41.417 (4)C23—C241.469 (4)
C3—H3A0.930C23—H23A0.930
C4—C91.414 (4)C24—C251.376 (5)
C4—C51.434 (4)C24—C291.382 (5)
C5—C61.364 (4)C25—C261.384 (5)
C5—C151.491 (4)C25—H25A0.930
C6—O11.399 (3)C26—C271.355 (6)
C6—C71.402 (4)C26—H26A0.930
C7—C81.350 (4)C27—C281.363 (6)
C7—H7A0.930C27—H27A0.930
C8—C91.425 (4)C28—C291.395 (5)
C8—H8A0.930C28—H28A0.930
C9—C101.411 (4)C29—H29A0.930
C10—H10A0.930C30—O41.201 (4)
C11—C201.354 (5)C30—O31.367 (3)
C11—C121.396 (5)C30—C311.465 (5)
C11—H11A0.930C31—C321.320 (5)
C12—C131.359 (5)C31—H31A0.930
C12—H12A0.930C32—C331.466 (5)
C13—C141.415 (4)C32—H32A0.930
C13—H13A0.930C33—C341.386 (5)
C14—C191.425 (4)C33—C381.389 (5)
C14—C151.433 (4)C34—C351.376 (5)
C15—C161.369 (4)C34—H34A0.930
C16—O31.403 (4)C35—C361.379 (6)
C16—C171.404 (4)C35—H35A0.930
C17—C181.348 (5)C36—C371.370 (6)
C17—H17A0.930C36—H36A0.930
C18—C191.420 (4)C37—C381.383 (5)
C18—H18A0.930C37—H37A0.930
C19—C201.409 (5)C38—H38A0.930
C20—H20A0.930
C10—C1—C2120.2 (3)C11—C20—H20A119.6
C10—C1—H1A119.9C19—C20—H20A119.6
C2—C1—H1A119.9O2—C21—O1122.9 (3)
C3—C2—C1121.2 (3)O2—C21—C22124.9 (3)
C3—C2—H2A119.4O1—C21—C22112.2 (3)
C1—C2—H2A119.4C23—C22—C21124.3 (3)
C2—C3—C4120.7 (3)C23—C22—H22A117.9
C2—C3—H3A119.6C21—C22—H22A117.9
C4—C3—H3A119.6C22—C23—C24126.3 (3)
C9—C4—C3118.1 (3)C22—C23—H23A116.8
C9—C4—C5119.8 (2)C24—C23—H23A116.8
C3—C4—C5122.1 (3)C25—C24—C29118.1 (3)
C6—C5—C4117.9 (3)C25—C24—C23119.2 (3)
C6—C5—C15121.2 (3)C29—C24—C23122.7 (3)
C4—C5—C15120.8 (2)C24—C25—C26121.2 (4)
C5—C6—O1119.7 (2)C24—C25—H25A119.4
C5—C6—C7122.9 (3)C26—C25—H25A119.4
O1—C6—C7117.2 (3)C27—C26—C25120.1 (4)
C8—C7—C6119.8 (3)C27—C26—H26A120.0
C8—C7—H7A120.1C25—C26—H26A120.0
C6—C7—H7A120.1C26—C27—C28120.1 (3)
C7—C8—C9120.7 (3)C26—C27—H27A119.9
C7—C8—H8A119.6C28—C27—H27A119.9
C9—C8—H8A119.6C27—C28—C29120.2 (4)
C10—C9—C4119.6 (3)C27—C28—H28A119.9
C10—C9—C8121.5 (3)C29—C28—H28A119.9
C4—C9—C8118.8 (3)C24—C29—C28120.2 (4)
C1—C10—C9120.2 (3)C24—C29—H29A119.9
C1—C10—H10A119.9C28—C29—H29A119.9
C9—C10—H10A119.9O4—C30—O3123.5 (3)
C20—C11—C12119.7 (3)O4—C30—C31125.8 (3)
C20—C11—H11A120.1O3—C30—C31110.7 (3)
C12—C11—H11A120.1C32—C31—C30120.0 (3)
C13—C12—C11121.5 (3)C32—C31—H31A120.0
C13—C12—H12A119.2C30—C31—H31A120.0
C11—C12—H12A119.2C31—C32—C33129.0 (3)
C12—C13—C14120.6 (3)C31—C32—H32A115.5
C12—C13—H13A119.7C33—C32—H32A115.5
C14—C13—H13A119.7C34—C33—C38118.5 (3)
C13—C14—C19117.6 (3)C34—C33—C32118.5 (3)
C13—C14—C15123.0 (3)C38—C33—C32123.0 (3)
C19—C14—C15119.4 (3)C35—C34—C33121.3 (4)
C16—C15—C14118.2 (3)C35—C34—H34A119.3
C16—C15—C5121.6 (2)C33—C34—H34A119.3
C14—C15—C5120.2 (2)C34—C35—C36119.5 (4)
C15—C16—O3117.3 (2)C34—C35—H35A120.3
C15—C16—C17122.7 (3)C36—C35—H35A120.3
O3—C16—C17119.9 (3)C37—C36—C35120.1 (3)
C18—C17—C16119.4 (3)C37—C36—H36A119.9
C18—C17—H17A120.3C35—C36—H36A119.9
C16—C17—H17A120.3C36—C37—C38120.5 (4)
C17—C18—C19121.5 (3)C36—C37—H37A119.7
C17—C18—H18A119.2C38—C37—H37A119.7
C19—C18—H18A119.2C37—C38—C33120.0 (3)
C20—C19—C18121.8 (3)C37—C38—H38A120.0
C20—C19—C14119.6 (3)C33—C38—H38A120.0
C18—C19—C14118.5 (3)C21—O1—C6118.3 (2)
C11—C20—C19120.9 (3)C30—O3—C16118.9 (2)
C10—C1—C2—C30.0 (5)C17—C18—C19—C20176.3 (3)
C1—C2—C3—C40.6 (5)C17—C18—C19—C143.4 (5)
C2—C3—C4—C91.6 (4)C13—C14—C19—C202.1 (4)
C2—C3—C4—C5175.3 (3)C15—C14—C19—C20176.3 (3)
C9—C4—C5—C61.1 (4)C13—C14—C19—C18178.2 (3)
C3—C4—C5—C6177.9 (3)C15—C14—C19—C183.4 (4)
C9—C4—C5—C15175.7 (2)C12—C11—C20—C191.1 (5)
C3—C4—C5—C151.1 (4)C18—C19—C20—C11179.6 (3)
C4—C5—C6—O1172.3 (2)C14—C19—C20—C110.7 (5)
C15—C5—C6—O14.4 (4)O2—C21—C22—C23165.2 (3)
C4—C5—C6—C71.7 (4)O1—C21—C22—C2314.2 (4)
C15—C5—C6—C7178.5 (3)C21—C22—C23—C24175.0 (3)
C5—C6—C7—C82.3 (4)C22—C23—C24—C25162.3 (4)
O1—C6—C7—C8171.9 (3)C22—C23—C24—C2915.3 (6)
C6—C7—C8—C90.0 (4)C29—C24—C25—C263.2 (6)
C3—C4—C9—C101.9 (4)C23—C24—C25—C26174.4 (4)
C5—C4—C9—C10175.0 (2)C24—C25—C26—C272.1 (7)
C3—C4—C9—C8179.8 (3)C25—C26—C27—C280.1 (7)
C5—C4—C9—C83.3 (4)C26—C27—C28—C290.7 (7)
C7—C8—C9—C10175.5 (3)C25—C24—C29—C282.4 (6)
C7—C8—C9—C42.7 (4)C23—C24—C29—C28175.1 (4)
C2—C1—C10—C90.4 (5)C27—C28—C29—C240.5 (7)
C4—C9—C10—C11.4 (4)O4—C30—C31—C324.8 (6)
C8—C9—C10—C1179.6 (3)O3—C30—C31—C32174.8 (3)
C20—C11—C12—C131.3 (6)C30—C31—C32—C33179.8 (3)
C11—C12—C13—C140.2 (5)C31—C32—C33—C34165.9 (4)
C12—C13—C14—C191.9 (4)C31—C32—C33—C3815.7 (6)
C12—C13—C14—C15176.5 (3)C38—C33—C34—C350.0 (6)
C13—C14—C15—C16178.6 (3)C32—C33—C34—C35178.5 (3)
C19—C14—C15—C160.3 (4)C33—C34—C35—C360.9 (6)
C13—C14—C15—C51.1 (4)C34—C35—C36—C371.1 (6)
C19—C14—C15—C5179.5 (2)C35—C36—C37—C380.4 (6)
C6—C5—C15—C16109.7 (3)C36—C37—C38—C330.4 (6)
C4—C5—C15—C1673.6 (4)C34—C33—C38—C370.6 (5)
C6—C5—C15—C1470.1 (4)C32—C33—C38—C37179.1 (3)
C4—C5—C15—C14106.6 (3)O2—C21—O1—C615.5 (4)
C14—C15—C16—O3179.6 (2)C22—C21—O1—C6163.9 (2)
C5—C15—C16—O30.7 (4)C5—C6—O1—C2169.4 (3)
C14—C15—C16—C173.1 (4)C7—C6—O1—C21116.2 (3)
C5—C15—C16—C17177.1 (3)O4—C30—O3—C162.2 (5)
C15—C16—C17—C183.3 (5)C31—C30—O3—C16177.5 (2)
O3—C16—C17—C18179.6 (3)C15—C16—O3—C30134.4 (3)
C16—C17—C18—C190.1 (5)C17—C16—O3—C3049.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O10.932.382.736 (3)103
C32—H32A···O40.932.492.833 (4)102
C11—C11A···Cg1i0.932.853.746 (3)162
C2—H2A···Cg2ii0.932.743.507 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC38H26O4
Mr546.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.3391 (17), 15.352 (2), 17.660 (3)
V3)2803.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.43 × 0.38
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
27455, 2894, 2753
Rint0.037
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.144, 1.02
No. of reflections2894
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O10.932.382.736 (3)102.5
C32—H32A···O40.932.492.833 (4)102.3
C11—C11A···Cg1i0.932.853.746 (3)162
C2—H2A···Cg2ii0.932.743.507 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20705031) and the Project of Fujian Science & Technology Committee (2006 F5067).

References

First citationChu, C. Y., Hwang, D. R., Wang, S. K. & Uang, B. (2001). Chem. Commun. pp. 980–981.  Web of Science CrossRef Google Scholar
First citationGoldberg, I. (1980). J. Am. Chem. Soc. 102, 4106–4113.  CSD CrossRef CAS Web of Science Google Scholar
First citationHorikoshi, R., Nambu, C. & Mochi, T. (2004). New J. Chem. 28, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. J. & Lin, W. B. (2002). J. Am. Chem. Soc. 124, 4554–4555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, Z. B., Liu, Q. Z., Gong, L. Z., Cui, X., Mi, A. Q. & Jiang, Y. Z. (2002). Chem. Commun. pp. 914–915.  Web of Science CrossRef Google Scholar
First citationNoyori, R. (2002). Angew. Chem. Int. Ed. 41, 2008–2022.  Web of Science CrossRef CAS Google Scholar
First citationPu, L. (1998). Chem. Rev. 98, 2405–2494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds