organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (2′S,3′S)-3,4-O-(2′,3′-di­meth­oxy­butane-2′,3′-di­yl)-α-L-rhamno­pyran­oside: a glycosyl acceptor

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: tsaiyofu@cycu.edu.tw

(Received 11 March 2008; accepted 26 March 2008; online 23 April 2008)

The title compound, C13H24O7, is the product of the ketalization of methyl L-(+)-rhamnopyran­oside with 2,3-butane­dione. It crystallizes with two mol­ecules in the asymmetric unit, which are connected by O—H⋯O hydrogen bonds. The C-3,4 diequatorial hydroxy groups of the methyl L-(+)-rhamnopyran­oside were protected, leaving the C-2 hydroxy group free. The L-(+)-rhamnopyran­oside and 2′,3′-dimethoxy­butane-2′,3′-diyl rings adopt chair conformations and all meth­oxy groups are in axial positions. The absolute configuration was assumed from the synthesis.

Related literature

For related literature, see: Duynstee et al. (1998[Duynstee, H. I., van Vilet, M. J., van der Marel, G. A. & van Boom, J. H. (1998). Eur. J. Org. Chem. pp. 303-307.]); Lang & Wullbrandt (1999[Lang, S. & Wullbrandt, D. (1999). Appl. Microbiol. Biotechnol. 51, 22-32.]); Leisinger & Margraff (1979[Leisinger, T. & Margraff, R. (1979). Microbiol. Rev. 43, 422-442.]); Montchamp et al. (1996[Montchamp, J.-L., Tian, F., Hart, M. E. & Frost, J. W. (1996). J. Org. Chem. 61, 3897-3899.]); Bauer et al. (2006[Bauer, J., Brandenburg, K., Zahringer, U. & Rademann, J. (2006). Chem. Eur. J. 12, 7116-7124.]).

[Scheme 1]

Experimental

Crystal data
  • C13H24O7

  • Mr = 292.32

  • Orthorhombic, P 21 21 21

  • a = 12.8743 (14) Å

  • b = 13.1182 (12) Å

  • c = 18.208 (3) Å

  • V = 3075.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.933, Tmax = 0.994

  • 3842 measured reflections

  • 3032 independent reflections

  • 2630 reflections with I > 2s(I)

  • Rint = 0.020

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.01

  • 3032 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O13i 0.82 2.17 2.907 (3) 150
O12—H12A⋯O5ii 0.82 2.10 2.846 (3) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: XSCANS (Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

L-Rhamnopyranse-containing glycolipids display a wide range of biological properties (Leisinger, & Margraff, 1979; Lang & Wullbrandt, 1999; Bauer et al., 2006). For the above reason, we were interesting to study on the total synthesis of rhamnolipids. The title compound, C13H24O7, which was synthesized by the ketalization of C-3,4 hydroxyl group of the methyl L-(+)-rhamnopyranoside, with 2,3-butanedione and chemoselectively protected the C-3,4 diequatorial hydroxyl group (Montchamp et al., 1996; Duynstee et al., 1998), was utilized as glycosyl acceptor in our synthetic strategy. The methyl L-(+)-rhamnopyranoside was prepared by acetalization of the commercial optical pure L-(+)-rhamnopyranose as starting material with methanol. The structure of L-rhamnopyranoside ring and 2',3'-dimethoxybutan-2',3'-diyl ring are chair conformation and all of methoxy groups are at axial position.

Related literature top

For related literature, see: Duynstee et al. (1998); Lang & Wullbrandt (1999); Leisinger & Margraff (1979); Montchamp et al. (1996); Bauer et al. (2006).

Experimental top

A solution of methyl L-(+)-rhamnopyranose ([a]20D = + 8.2°) (638 mg, 3.58 mmol), trimeyhyl orthoformate (1.20 ml, 10.75 mmol) and 2,3-butanedione (0.35 ml, 3.98 mmol) in dried methanol (15 ml) was treated with camphersulfonic acid (50 mg, 0.22 mmol). The mixture was refluxed for 18 h. The cool reaction mixture was then treated with NEt3 and concentrated under reduced pressure to observe crude product. The crude product was purified via flash column chromatography on silica gel (EtOAc/n-hexane = 1:1) to obtain 874 mg (84%) of the title compound as white powder. The pure product was recrystalized from CH2Cl2 at room temperature.

Refinement top

In the absence of anomalous scatterers Friedel pairs were merged prior to refinement. The C-bound H atoms were placed in calculated positions (C—H = 0.96–0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C). The hydroxy H atoms were constrained to ideal geometries with O(N)—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are represented at the 30% probability level. The H atoms are drawn with an arbitrary radius.
Methyl (2'S,3'S)-3,4-O-(2',3'-dimethoxybutane-2',3'-diyl)-α-L-rhamnopyranoside top
Crystal data top
C13H24O7F(000) = 1264
Mr = 292.32Dx = 1.263 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 27 reflections
a = 12.8743 (14) Åθ = 5.1–12.5°
b = 13.1182 (12) ŵ = 0.10 mm1
c = 18.208 (3) ÅT = 295 K
V = 3075.0 (7) Å3Block, colourless
Z = 80.6 × 0.5 × 0.4 mm
Data collection top
Bruker P4
diffractometer
2630 reflections with I > 2s(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 115
Absorption correction: ψ scan
(North et al., 1968)
k = 115
Tmin = 0.933, Tmax = 0.994l = 121
3842 measured reflections3 standard reflections every 97 reflections
3032 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7995P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3032 reflectionsΔρmax = 0.15 e Å3
362 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (6)
Crystal data top
C13H24O7V = 3075.0 (7) Å3
Mr = 292.32Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.8743 (14) ŵ = 0.10 mm1
b = 13.1182 (12) ÅT = 295 K
c = 18.208 (3) Å0.6 × 0.5 × 0.4 mm
Data collection top
Bruker P4
diffractometer
2630 reflections with I > 2s(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.933, Tmax = 0.9943 standard reflections every 97 reflections
3842 measured reflections intensity decay: none
3032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
3032 reflectionsΔρmin = 0.17 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29481 (18)0.87985 (15)0.88054 (10)0.0505 (5)
O20.1553 (2)0.8215 (2)0.95033 (13)0.0673 (7)
O30.35887 (18)0.66974 (18)0.87880 (14)0.0614 (6)
O40.20071 (17)0.70426 (15)0.82239 (11)0.0469 (5)
O50.38039 (16)0.96048 (16)0.74810 (11)0.0502 (5)
H5A0.41380.94810.78540.075*
O60.11031 (18)0.99268 (18)0.71133 (13)0.0626 (6)
O70.21798 (18)0.86713 (17)0.66048 (11)0.0529 (5)
O80.38389 (15)0.21315 (15)0.83116 (10)0.0426 (4)
O90.38270 (19)0.33878 (17)0.92121 (12)0.0564 (6)
O100.17861 (17)0.16879 (17)0.87757 (12)0.0548 (5)
O110.20194 (17)0.33159 (15)0.82917 (10)0.0470 (5)
O120.37676 (17)0.15454 (15)0.67829 (11)0.0481 (5)
H12A0.38810.11100.70960.072*
O130.43863 (16)0.41769 (15)0.66158 (12)0.0515 (5)
O140.27898 (16)0.34098 (16)0.63634 (10)0.0451 (5)
C10.2596 (3)0.8024 (3)0.92943 (17)0.0570 (9)
C20.3345 (4)0.8045 (3)0.99348 (19)0.0829 (13)
H2A0.33520.87141.01480.124*
H2B0.40300.78750.97660.124*
H2C0.31290.75581.02980.124*
C30.1350 (4)0.9160 (3)0.9869 (2)0.0932 (15)
H3A0.06220.92100.99770.140*
H3B0.15510.97160.95570.140*
H3C0.17400.91881.03170.140*
C40.2534 (3)0.6969 (2)0.89081 (17)0.0507 (8)
C50.3743 (3)0.5765 (3)0.8392 (3)0.0899 (15)
H5B0.44730.56410.83350.135*
H5C0.34250.58170.79160.135*
H5D0.34330.52110.86590.135*
C60.1952 (3)0.6187 (3)0.9353 (2)0.0671 (10)
H6A0.19330.55530.90890.101*
H6B0.12560.64200.94380.101*
H6C0.22970.60880.98150.101*
C70.2429 (2)0.7820 (2)0.77618 (15)0.0426 (7)
H7A0.31600.76700.76590.051*
C80.2344 (2)0.8829 (2)0.81437 (15)0.0436 (7)
H8A0.16150.89520.82710.052*
C90.2721 (2)0.9686 (2)0.76624 (16)0.0438 (7)
H9A0.25891.03400.79040.053*
C100.2127 (3)0.9639 (2)0.69401 (17)0.0497 (7)
H10A0.24201.01450.66030.060*
C110.0474 (3)1.0130 (4)0.6492 (3)0.1003 (16)
H11A0.02091.03250.66510.150*
H11B0.04280.95290.61930.150*
H11C0.07761.06740.62110.150*
C120.1820 (3)0.7835 (2)0.70469 (16)0.0477 (7)
H12B0.10800.79240.71540.057*
C130.1975 (3)0.6876 (3)0.6604 (2)0.0698 (10)
H13A0.15750.69170.61600.105*
H13B0.17510.62980.68860.105*
H13C0.26970.68020.64840.105*
C140.3400 (3)0.2447 (2)0.89914 (15)0.0445 (7)
C150.3620 (3)0.1598 (3)0.95361 (17)0.0591 (9)
H15A0.43560.14970.95750.089*
H15B0.32970.09800.93700.089*
H15C0.33450.17801.00080.089*
C160.4938 (3)0.3455 (3)0.9215 (2)0.0743 (11)
H16A0.51440.41220.93750.111*
H16B0.51970.33350.87280.111*
H16C0.52160.29520.95440.111*
C170.2219 (3)0.2663 (2)0.89001 (16)0.0471 (7)
C180.0701 (3)0.1652 (3)0.8604 (2)0.0737 (11)
H18A0.04930.09560.85320.111*
H18B0.05740.20320.81620.111*
H18C0.03100.19430.90000.111*
C190.1755 (3)0.3204 (3)0.95614 (18)0.0642 (10)
H19A0.10280.33190.94790.096*
H19B0.20990.38450.96320.096*
H19C0.18440.27880.99910.096*
C200.2480 (2)0.2952 (2)0.76220 (15)0.0400 (6)
H20A0.21810.22900.74890.048*
C210.3632 (2)0.2850 (2)0.77310 (14)0.0388 (6)
H21A0.39170.35150.78690.047*
C220.4147 (2)0.2498 (2)0.70284 (15)0.0400 (6)
H22A0.49020.24670.70940.048*
C230.3874 (2)0.3265 (2)0.64348 (15)0.0425 (6)
H23A0.41470.30170.59650.051*
C240.4307 (3)0.4943 (3)0.6062 (2)0.0701 (10)
H24A0.46650.55460.62220.105*
H24B0.35890.51010.59780.105*
H24C0.46150.46990.56160.105*
C250.2258 (2)0.3727 (2)0.70230 (15)0.0430 (7)
H25A0.25110.43990.71750.052*
C260.1112 (3)0.3797 (3)0.6822 (2)0.0652 (10)
H26A0.10190.43040.64470.098*
H26B0.07180.39840.72490.098*
H26C0.08770.31490.66430.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0683 (14)0.0485 (11)0.0347 (10)0.0162 (11)0.0075 (10)0.0047 (9)
O20.0860 (18)0.0663 (15)0.0495 (12)0.0112 (14)0.0156 (12)0.0026 (12)
O30.0551 (14)0.0524 (12)0.0768 (15)0.0051 (11)0.0090 (12)0.0158 (12)
O40.0527 (12)0.0444 (10)0.0436 (10)0.0123 (10)0.0050 (10)0.0060 (9)
O50.0487 (12)0.0539 (12)0.0480 (11)0.0057 (10)0.0044 (10)0.0100 (10)
O60.0520 (13)0.0695 (15)0.0662 (14)0.0071 (12)0.0070 (12)0.0189 (12)
O70.0619 (13)0.0616 (13)0.0353 (10)0.0092 (11)0.0043 (10)0.0041 (10)
O80.0487 (11)0.0449 (10)0.0341 (9)0.0091 (9)0.0015 (9)0.0017 (9)
O90.0694 (15)0.0526 (12)0.0473 (11)0.0022 (12)0.0088 (11)0.0066 (11)
O100.0536 (12)0.0520 (12)0.0587 (13)0.0000 (11)0.0034 (11)0.0075 (11)
O110.0538 (12)0.0503 (11)0.0368 (9)0.0139 (10)0.0053 (9)0.0036 (9)
O120.0582 (12)0.0424 (10)0.0436 (10)0.0060 (10)0.0036 (10)0.0028 (9)
O130.0543 (12)0.0473 (11)0.0530 (12)0.0147 (10)0.0035 (11)0.0055 (10)
O140.0481 (12)0.0549 (12)0.0323 (9)0.0046 (10)0.0023 (8)0.0026 (9)
C10.071 (2)0.062 (2)0.0384 (15)0.0189 (18)0.0021 (16)0.0082 (14)
C20.119 (3)0.086 (3)0.0434 (18)0.035 (3)0.025 (2)0.0195 (19)
C30.131 (4)0.087 (3)0.062 (2)0.003 (3)0.024 (3)0.012 (2)
C40.0558 (19)0.0491 (17)0.0472 (16)0.0094 (15)0.0059 (15)0.0139 (14)
C50.069 (2)0.0473 (19)0.154 (5)0.0036 (19)0.001 (3)0.009 (3)
C60.077 (2)0.063 (2)0.062 (2)0.025 (2)0.009 (2)0.0213 (17)
C70.0476 (16)0.0417 (14)0.0384 (14)0.0063 (13)0.0001 (13)0.0035 (13)
C80.0511 (17)0.0457 (15)0.0342 (14)0.0060 (13)0.0045 (13)0.0027 (13)
C90.0492 (16)0.0419 (15)0.0401 (15)0.0013 (13)0.0001 (13)0.0040 (12)
C100.0528 (18)0.0503 (17)0.0460 (16)0.0033 (15)0.0022 (15)0.0133 (14)
C110.066 (3)0.142 (4)0.093 (3)0.003 (3)0.024 (2)0.051 (3)
C120.0505 (17)0.0518 (16)0.0409 (15)0.0078 (15)0.0031 (14)0.0011 (14)
C130.085 (3)0.069 (2)0.056 (2)0.006 (2)0.010 (2)0.0167 (18)
C140.0571 (18)0.0438 (15)0.0327 (14)0.0051 (14)0.0022 (13)0.0014 (12)
C150.077 (2)0.0559 (18)0.0441 (16)0.0182 (18)0.0011 (16)0.0077 (15)
C160.074 (2)0.075 (2)0.074 (2)0.008 (2)0.031 (2)0.000 (2)
C170.0574 (18)0.0465 (16)0.0373 (14)0.0096 (14)0.0063 (14)0.0057 (13)
C180.054 (2)0.087 (3)0.080 (2)0.007 (2)0.0077 (18)0.008 (2)
C190.080 (2)0.066 (2)0.0462 (17)0.018 (2)0.0168 (17)0.0049 (17)
C200.0414 (15)0.0434 (15)0.0353 (14)0.0022 (13)0.0044 (12)0.0009 (12)
C210.0415 (15)0.0402 (14)0.0347 (13)0.0003 (12)0.0029 (12)0.0028 (12)
C220.0377 (14)0.0422 (15)0.0400 (14)0.0043 (12)0.0001 (12)0.0015 (12)
C230.0424 (15)0.0470 (15)0.0381 (14)0.0050 (14)0.0016 (12)0.0020 (13)
C240.092 (3)0.057 (2)0.062 (2)0.020 (2)0.002 (2)0.0159 (17)
C250.0452 (16)0.0478 (16)0.0361 (14)0.0033 (13)0.0030 (13)0.0012 (12)
C260.0502 (19)0.089 (3)0.057 (2)0.0166 (19)0.0059 (16)0.0103 (19)
Geometric parameters (Å, º) top
O1—C11.425 (4)C7—H7A0.9800
O1—C81.434 (3)C8—C91.505 (4)
O2—C11.419 (4)C8—H8A0.9800
O2—C31.430 (5)C9—C101.523 (4)
O3—C41.421 (4)C9—H9A0.9800
O3—C51.434 (5)C10—H10A0.9800
O4—C41.422 (4)C11—H11A0.9600
O4—C71.429 (3)C11—H11B0.9600
O5—C91.437 (4)C11—H11C0.9600
O5—H5A0.8200C12—C131.508 (5)
O6—C101.407 (4)C12—H12B0.9800
O6—C111.417 (5)C13—H13A0.9600
O7—C101.410 (4)C13—H13B0.9600
O7—C121.437 (4)C13—H13C0.9600
O8—C141.423 (3)C14—C151.519 (4)
O8—C211.441 (3)C14—C171.555 (4)
O9—C141.409 (4)C15—H15A0.9600
O9—C161.433 (4)C15—H15B0.9600
O10—C171.414 (4)C15—H15C0.9600
O10—C181.432 (4)C16—H16A0.9600
O11—C171.424 (3)C16—H16B0.9600
O11—C201.438 (3)C16—H16C0.9600
O12—C221.414 (3)C17—C191.520 (4)
O12—H12A0.8200C18—H18A0.9600
O13—C231.406 (3)C18—H18B0.9600
O13—C241.427 (4)C18—H18C0.9600
O14—C231.415 (4)C19—H19A0.9600
O14—C251.444 (3)C19—H19B0.9600
C1—C21.513 (5)C19—H19C0.9600
C1—C41.555 (5)C20—C211.501 (4)
C2—H2A0.9600C20—C251.519 (4)
C2—H2B0.9600C20—H20A0.9800
C2—H2C0.9600C21—C221.514 (4)
C3—H3A0.9600C21—H21A0.9800
C3—H3B0.9600C22—C231.518 (4)
C3—H3C0.9600C22—H22A0.9800
C4—C61.507 (4)C23—H23A0.9800
C5—H5B0.9600C24—H24A0.9600
C5—H5C0.9600C24—H24B0.9600
C5—H5D0.9600C24—H24C0.9600
C6—H6A0.9600C25—C261.522 (4)
C6—H6B0.9600C25—H25A0.9800
C6—H6C0.9600C26—H26A0.9600
C7—C81.500 (4)C26—H26B0.9600
C7—C121.519 (4)C26—H26C0.9600
C1—O1—C8111.9 (2)C7—C12—H12B109.5
C1—O2—C3116.8 (3)C12—C13—H13A109.5
C4—O3—C5115.0 (3)C12—C13—H13B109.5
C4—O4—C7112.5 (2)H13A—C13—H13B109.5
C9—O5—H5A109.5C12—C13—H13C109.5
C10—O6—C11114.0 (3)H13A—C13—H13C109.5
C10—O7—C12115.4 (2)H13B—C13—H13C109.5
C14—O8—C21112.0 (2)O9—C14—O8110.4 (2)
C14—O9—C16116.4 (3)O9—C14—C15112.5 (2)
C17—O10—C18116.7 (3)O8—C14—C15106.3 (2)
C17—O11—C20112.7 (2)O9—C14—C17104.6 (2)
C22—O12—H12A109.5O8—C14—C17110.4 (2)
C23—O13—C24113.6 (2)C15—C14—C17112.7 (3)
C23—O14—C25115.5 (2)C14—C15—H15A109.5
O2—C1—O1110.0 (3)C14—C15—H15B109.5
O2—C1—C2113.2 (3)H15A—C15—H15B109.5
O1—C1—C2105.4 (3)C14—C15—H15C109.5
O2—C1—C4103.3 (3)H15A—C15—H15C109.5
O1—C1—C4111.7 (2)H15B—C15—H15C109.5
C2—C1—C4113.4 (3)O9—C16—H16A109.5
C1—C2—H2A109.5O9—C16—H16B109.5
C1—C2—H2B109.5H16A—C16—H16B109.5
H2A—C2—H2B109.5O9—C16—H16C109.5
C1—C2—H2C109.5H16A—C16—H16C109.5
H2A—C2—H2C109.5H16B—C16—H16C109.5
H2B—C2—H2C109.5O10—C17—O11110.4 (3)
O2—C3—H3A109.5O10—C17—C19113.2 (3)
O2—C3—H3B109.5O11—C17—C19105.4 (2)
H3A—C3—H3B109.5O10—C17—C14103.8 (2)
O2—C3—H3C109.5O11—C17—C14111.7 (2)
H3A—C3—H3C109.5C19—C17—C14112.6 (3)
H3B—C3—H3C109.5O10—C18—H18A109.5
O3—C4—O4109.8 (3)O10—C18—H18B109.5
O3—C4—C6112.8 (3)H18A—C18—H18B109.5
O4—C4—C6106.3 (3)O10—C18—H18C109.5
O3—C4—C1104.1 (3)H18A—C18—H18C109.5
O4—C4—C1111.1 (2)H18B—C18—H18C109.5
C6—C4—C1112.9 (3)C17—C19—H19A109.5
O3—C5—H5B109.5C17—C19—H19B109.5
O3—C5—H5C109.5H19A—C19—H19B109.5
H5B—C5—H5C109.5C17—C19—H19C109.5
O3—C5—H5D109.5H19A—C19—H19C109.5
H5B—C5—H5D109.5H19B—C19—H19C109.5
H5C—C5—H5D109.5O11—C20—C21109.0 (2)
C4—C6—H6A109.5O11—C20—C25108.0 (2)
C4—C6—H6B109.5C21—C20—C25109.9 (2)
H6A—C6—H6B109.5O11—C20—H20A110.0
C4—C6—H6C109.5C21—C20—H20A110.0
H6A—C6—H6C109.5C25—C20—H20A110.0
H6B—C6—H6C109.5O8—C21—C20109.8 (2)
O4—C7—C8109.2 (2)O8—C21—C22109.8 (2)
O4—C7—C12108.5 (2)C20—C21—C22110.4 (2)
C8—C7—C12110.4 (2)O8—C21—H21A108.9
O4—C7—H7A109.6C20—C21—H21A108.9
C8—C7—H7A109.6C22—C21—H21A108.9
C12—C7—H7A109.6O12—C22—C21112.7 (2)
O1—C8—C9109.6 (2)O12—C22—C23106.3 (2)
O1—C8—C7109.0 (2)C21—C22—C23107.3 (2)
C9—C8—C7111.5 (2)O12—C22—H22A110.2
O1—C8—H8A108.9C21—C22—H22A110.2
C9—C8—H8A108.9C23—C22—H22A110.2
C7—C8—H8A108.9O13—C23—O14111.7 (2)
O5—C9—C8113.0 (2)O13—C23—C22106.8 (2)
O5—C9—C10106.6 (2)O14—C23—C22112.5 (2)
C8—C9—C10108.1 (2)O13—C23—H23A108.6
O5—C9—H9A109.7O14—C23—H23A108.6
C8—C9—H9A109.7C22—C23—H23A108.6
C10—C9—H9A109.7O13—C24—H24A109.5
O7—C10—O6112.6 (3)O13—C24—H24B109.5
O7—C10—C9112.7 (2)H24A—C24—H24B109.5
O6—C10—C9105.4 (3)O13—C24—H24C109.5
O7—C10—H10A108.6H24A—C24—H24C109.5
O6—C10—H10A108.6H24B—C24—H24C109.5
C9—C10—H10A108.6O14—C25—C20108.3 (2)
O6—C11—H11A109.5O14—C25—C26106.1 (2)
O6—C11—H11B109.5C20—C25—C26113.3 (3)
H11A—C11—H11B109.5O14—C25—H25A109.7
O6—C11—H11C109.5C20—C25—H25A109.7
H11A—C11—H11C109.5C26—C25—H25A109.7
H11B—C11—H11C109.5C25—C26—H26A109.5
O7—C12—C13107.1 (3)C25—C26—H26B109.5
O7—C12—C7108.9 (2)H26A—C26—H26B109.5
C13—C12—C7112.3 (3)C25—C26—H26C109.5
O7—C12—H12B109.5H26A—C26—H26C109.5
C13—C12—H12B109.5H26B—C26—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O13i0.822.172.907 (3)150
O12—H12A···O5ii0.822.102.846 (3)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H24O7
Mr292.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)12.8743 (14), 13.1182 (12), 18.208 (3)
V3)3075.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.933, 0.994
No. of measured, independent and
observed [I > 2s(I)] reflections
3842, 3032, 2630
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.02
No. of reflections3032
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: XSCANS (Siemens, 1995), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O13i0.82002.17002.907 (3)150.00
O12—H12A···O5ii0.82002.10002.846 (3)152.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z.
 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 96-2113-M-033-003) and in part from the Project of the Specific Research Fields of Chung Yuan Christian University, Taiwan (CYCU-95-CR-CH).

References

First citationBauer, J., Brandenburg, K., Zahringer, U. & Rademann, J. (2006). Chem. Eur. J. 12, 7116–7124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuynstee, H. I., van Vilet, M. J., van der Marel, G. A. & van Boom, J. H. (1998). Eur. J. Org. Chem. pp. 303–307.  CrossRef Google Scholar
First citationLang, S. & Wullbrandt, D. (1999). Appl. Microbiol. Biotechnol. 51, 22–32.  CrossRef PubMed CAS Google Scholar
First citationLeisinger, T. & Margraff, R. (1979). Microbiol. Rev. 43, 422–442.  PubMed CAS Web of Science Google Scholar
First citationMontchamp, J.-L., Tian, F., Hart, M. E. & Frost, J. W. (1996). J. Org. Chem. 61, 3897–3899.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds