metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[chlorido­cop­per(I)]-μ4-1,4-bis­­[1-(3-pyridylmeth­yl)-1H-benzimid­azol-2-yl]butane]

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and bJilin Medical College, Jilin 132013, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 12 March 2008; accepted 1 April 2008; online 10 April 2008)

The title CuI coordination polymer, [Cu2Cl2(C30H28N6)]n, was obtained by reaction of CuCl2·2H2O and 1,4-bis­[1-(3-pyridyl­meth­yl)-1H-benzimidazol-2-yl]butane. Each CuI cation is three-coordinated by a ClN2 donor set. The anion acts as a tetra­dentate ligand, linking CuI centres into a polymeric chain.

Related literature

For a related compound, see Wang & Xu (2007[Wang, W.-J. & Xu, L. (2007). Acta Cryst. E63, m1993-m1994.]). For details of the synthesis, see: Li et al. (2007[Li, S.-L., Liu, J. & Ma, J.-F. (2007). Acta Cryst. E63, o4509.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl2(C30H28N6)]

  • Mr = 670.56

  • Monoclinic, P 21 /n

  • a = 9.4792 (11) Å

  • b = 17.810 (2) Å

  • c = 17.326 (2) Å

  • β = 97.412 (2)°

  • V = 2900.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 (2) K

  • 0.23 × 0.20 × 0.09 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.66, Tmax = 0.84

  • 17514 measured reflections

  • 6759 independent reflections

  • 3170 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.185

  • S = 0.97

  • 6759 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N4 1.940 (4)
Cu1—N6i 2.079 (5)
Cu1—Cl1 2.1836 (16)
Cu2—N1 1.942 (4)
Cu2—N5ii 2.116 (4)
Cu2—Cl2 2.1672 (16)
N4—Cu1—N6i 111.23 (18)
N4—Cu1—Cl1 141.19 (13)
N6i—Cu1—Cl1 107.12 (13)
N1—Cu2—N5ii 108.71 (17)
N1—Cu2—Cl2 142.93 (13)
N5ii—Cu2—Cl2 107.36 (13)
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, three are two crystallographically unique Cu ions, and each CuI ion is three-coordinated by one Cl- anion and two nitrogen atoms from two L anions. Each L anion in (I) coordinates to four CuI cations through its two imidazole N atoms and two pyridine N atoms, thus acing as a tetradentate ligand. The CuI cations are linked by L anions to form a chain along a axis. For a related compound, see Wang & Xu (2007).

Related literature top

For a related compound, see Wang & Xu (2007). For details of the synthesis, see: Li et al. (2007).

Experimental top

The ligand was synthesized according to the literature (Li et al., 2007) but 4-(chloromethyl)pyridine was replaced by 3-(chloromethyl)pyridine. A mixture of CuCl2.2H2O (0.034 g, 2 mmol), H2L (0.945 g, 2 mmol), and water (8 ml) was sealed in a Teflon reactor (15 ml) and heated at 130 °C for 3 days. After the mixture had been cooled to room temperature at 10 °C.h-1, red crystals of the title compound were obtained.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.5Ueq (C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z.]
poly[bis[chloridocopper(I)]-µ4- 1,4-bis[1-(3-pyridylmethyl)-1H-benzimidazol-2-yl]butane] top
Crystal data top
[Cu2Cl2(C30H28N6)]F(000) = 1368
Mr = 670.56Dx = 1.536 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3170 reflections
a = 9.4792 (11) Åθ = 1.7–28.3°
b = 17.810 (2) ŵ = 1.68 mm1
c = 17.326 (2) ÅT = 293 K
β = 97.412 (2)°Block, red
V = 2900.5 (6) Å30.23 × 0.20 × 0.09 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
6759 independent reflections
Radiation source: fine-focus sealed tube3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.66, Tmax = 0.84k = 1923
17514 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
6759 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu2Cl2(C30H28N6)]V = 2900.5 (6) Å3
Mr = 670.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4792 (11) ŵ = 1.68 mm1
b = 17.810 (2) ÅT = 293 K
c = 17.326 (2) Å0.23 × 0.20 × 0.09 mm
β = 97.412 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3170 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.84Rint = 0.062
17514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 0.97Δρmax = 0.42 e Å3
6759 reflectionsΔρmin = 0.44 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.74531 (8)0.80687 (4)0.14462 (4)0.0609 (2)
Cu20.78422 (7)0.87957 (4)0.16694 (4)0.0574 (2)
C10.7866 (5)0.9707 (3)0.1746 (3)0.0456 (12)
C20.7040 (5)0.9140 (3)0.2683 (3)0.0460 (12)
C30.7232 (5)0.9888 (3)0.2904 (3)0.0474 (12)
C40.6930 (6)1.0155 (4)0.3612 (3)0.0660 (16)
H40.70931.06520.37640.079*
C50.6365 (7)0.9631 (4)0.4082 (3)0.083 (2)
H50.61310.97830.45630.099*
C60.6141 (7)0.8894 (4)0.3856 (3)0.081 (2)
H60.57300.85670.41810.097*
C70.6507 (6)0.8627 (3)0.3163 (3)0.0646 (16)
H70.63990.81230.30260.078*
C80.8373 (6)0.9869 (3)0.0976 (3)0.0552 (14)
H8A0.89160.94420.08280.066*
H8B0.90031.03000.10330.066*
C90.7150 (5)1.0027 (3)0.0326 (3)0.0493 (12)
H9A0.65470.95870.02430.059*
H9B0.65771.04380.04790.059*
C100.7729 (5)1.0226 (3)0.0425 (3)0.0581 (14)
H10A0.83180.98170.05680.070*
H10B0.83251.06690.03380.070*
C110.6556 (6)1.0379 (3)0.1096 (3)0.0559 (14)
H11A0.58211.00000.10930.067*
H11B0.61301.08630.10160.067*
C120.7078 (5)1.0375 (3)0.1868 (3)0.0466 (12)
C130.8090 (5)1.0002 (3)0.2879 (3)0.0452 (12)
C140.7697 (5)1.0753 (3)0.3012 (3)0.0499 (13)
C150.7930 (7)1.1126 (3)0.3687 (3)0.0685 (17)
H150.76351.16190.37810.082*
C160.8612 (8)1.0735 (4)0.4208 (4)0.082 (2)
H160.88051.09720.46610.099*
C170.9024 (7)0.9993 (4)0.4079 (3)0.0748 (19)
H170.94840.97450.44470.090*
C180.8765 (6)0.9618 (3)0.3416 (3)0.0589 (14)
H180.90380.91190.33340.071*
C190.6695 (6)1.1750 (3)0.2180 (3)0.0558 (14)
H19A0.58941.17550.18830.067*
H19B0.64171.20190.26630.067*
C200.7944 (6)1.2145 (3)0.1722 (3)0.0521 (13)
C210.7711 (7)1.2767 (4)0.1289 (4)0.0792 (19)
H210.67901.29320.12580.095*
C220.8856 (9)1.3143 (4)0.0902 (4)0.095 (2)
H220.87071.35720.06170.114*
C231.0253 (7)1.2885 (4)0.0931 (4)0.0750 (18)
H231.10171.31440.06640.090*
C240.9395 (6)1.1933 (3)0.1734 (3)0.0620 (15)
H240.95821.15260.20420.074*
C250.7993 (5)1.1051 (3)0.2233 (3)0.0497 (13)
H25A0.88341.11400.19810.060*
H25B0.81601.12660.27510.060*
C260.6735 (5)1.1438 (3)0.1775 (3)0.0447 (12)
C270.6887 (6)1.1899 (3)0.1157 (3)0.0600 (15)
H270.77891.20030.10270.072*
C280.5706 (6)1.2209 (4)0.0727 (4)0.0742 (18)
H280.58001.25320.03150.089*
C290.4405 (6)1.2033 (3)0.0918 (3)0.0619 (15)
H290.36061.22310.06190.074*
C300.5386 (6)1.1306 (3)0.1931 (3)0.0533 (13)
H300.52701.09990.23520.064*
N10.7676 (4)0.9779 (2)0.2158 (2)0.0484 (10)
N20.7044 (4)1.0974 (2)0.2354 (2)0.0491 (11)
N30.7773 (4)1.0246 (2)0.2295 (2)0.0459 (10)
N40.7451 (4)0.9039 (2)0.1955 (2)0.0489 (10)
N50.4217 (5)1.1587 (3)0.1516 (3)0.0584 (12)
N61.0488 (5)1.2277 (2)0.1335 (3)0.0610 (12)
Cl10.60349 (16)0.71402 (8)0.10540 (9)0.0659 (4)
Cl20.93594 (16)0.80208 (9)0.10598 (10)0.0758 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0632 (5)0.0542 (4)0.0644 (5)0.0018 (3)0.0055 (4)0.0063 (3)
Cu20.0579 (5)0.0523 (4)0.0641 (4)0.0078 (3)0.0158 (3)0.0094 (3)
C10.033 (3)0.057 (3)0.047 (3)0.005 (2)0.007 (2)0.002 (3)
C20.040 (3)0.050 (3)0.049 (3)0.002 (2)0.007 (2)0.008 (2)
C30.048 (3)0.057 (3)0.038 (3)0.005 (2)0.007 (2)0.002 (2)
C40.074 (4)0.071 (4)0.053 (3)0.007 (3)0.009 (3)0.007 (3)
C50.100 (5)0.105 (6)0.047 (3)0.014 (4)0.019 (3)0.004 (4)
C60.098 (6)0.088 (5)0.058 (4)0.019 (4)0.014 (4)0.017 (4)
C70.071 (4)0.059 (4)0.062 (4)0.011 (3)0.000 (3)0.001 (3)
C80.053 (3)0.061 (3)0.053 (3)0.002 (3)0.013 (3)0.002 (3)
C90.049 (3)0.059 (3)0.040 (3)0.002 (3)0.007 (2)0.000 (2)
C100.051 (3)0.076 (4)0.051 (3)0.004 (3)0.018 (3)0.003 (3)
C110.058 (4)0.065 (4)0.047 (3)0.006 (3)0.016 (3)0.001 (3)
C120.043 (3)0.051 (3)0.046 (3)0.000 (2)0.008 (2)0.003 (2)
C130.039 (3)0.054 (3)0.043 (3)0.005 (2)0.008 (2)0.000 (2)
C140.047 (3)0.051 (3)0.053 (3)0.002 (2)0.011 (3)0.001 (2)
C150.075 (4)0.066 (4)0.069 (4)0.004 (3)0.022 (3)0.021 (3)
C160.110 (6)0.084 (5)0.059 (4)0.009 (4)0.033 (4)0.025 (3)
C170.088 (5)0.091 (5)0.051 (3)0.003 (4)0.032 (3)0.001 (3)
C180.058 (4)0.059 (4)0.061 (3)0.004 (3)0.012 (3)0.010 (3)
C190.052 (3)0.047 (3)0.067 (4)0.007 (3)0.005 (3)0.002 (3)
C200.060 (4)0.044 (3)0.052 (3)0.007 (3)0.004 (3)0.001 (2)
C210.064 (4)0.075 (4)0.100 (5)0.004 (3)0.014 (4)0.025 (4)
C220.105 (6)0.076 (5)0.101 (5)0.026 (4)0.002 (5)0.041 (4)
C230.067 (4)0.069 (4)0.088 (5)0.002 (3)0.004 (4)0.016 (4)
C240.054 (4)0.055 (3)0.079 (4)0.005 (3)0.016 (3)0.017 (3)
C250.050 (3)0.048 (3)0.050 (3)0.005 (2)0.005 (3)0.001 (2)
C260.045 (3)0.039 (3)0.050 (3)0.001 (2)0.007 (2)0.005 (2)
C270.048 (3)0.060 (4)0.073 (4)0.002 (3)0.014 (3)0.012 (3)
C280.053 (4)0.086 (4)0.084 (4)0.003 (3)0.007 (3)0.039 (4)
C290.048 (4)0.061 (4)0.077 (4)0.005 (3)0.009 (3)0.020 (3)
C300.050 (4)0.054 (3)0.058 (3)0.003 (3)0.015 (3)0.012 (3)
N10.053 (3)0.047 (2)0.046 (2)0.001 (2)0.008 (2)0.003 (2)
N20.051 (3)0.046 (3)0.052 (3)0.001 (2)0.014 (2)0.000 (2)
N30.043 (3)0.052 (3)0.042 (2)0.0028 (19)0.0033 (19)0.002 (2)
N40.044 (3)0.050 (3)0.054 (3)0.004 (2)0.011 (2)0.000 (2)
N50.054 (3)0.057 (3)0.065 (3)0.008 (2)0.011 (2)0.013 (2)
N60.057 (3)0.049 (3)0.076 (3)0.002 (2)0.008 (3)0.016 (2)
Cl10.0595 (9)0.0634 (9)0.0718 (9)0.0083 (7)0.0024 (7)0.0051 (7)
Cl20.0494 (9)0.0694 (10)0.1084 (12)0.0091 (7)0.0093 (8)0.0271 (9)
Geometric parameters (Å, º) top
Cu1—N41.940 (4)C14—N21.423 (6)
Cu1—N6i2.079 (5)C15—C161.367 (8)
Cu1—Cl12.1836 (16)C15—H150.9300
Cu2—N11.942 (4)C16—C171.387 (8)
Cu2—N5ii2.116 (4)C16—H160.9300
Cu2—Cl22.1672 (16)C17—C181.378 (7)
C1—N41.318 (6)C17—H170.9300
C1—N31.363 (6)C18—H180.9300
C1—C81.502 (7)C19—N21.462 (6)
C2—C71.375 (7)C19—C201.510 (7)
C2—N41.379 (6)C19—H19A0.9700
C2—C31.391 (7)C19—H19B0.9700
C3—C41.380 (7)C20—C211.372 (8)
C3—N31.385 (6)C20—C241.429 (7)
C4—C51.390 (8)C21—C221.374 (9)
C4—H40.9300C21—H210.9300
C5—C61.379 (8)C22—C231.408 (9)
C5—H50.9300C22—H220.9300
C6—C71.376 (8)C23—N61.324 (7)
C6—H60.9300C23—H230.9300
C7—H70.9300C24—N61.319 (7)
C8—C91.535 (7)C24—H240.9300
C8—H8A0.9700C25—N31.455 (6)
C8—H8B0.9700C25—C261.511 (7)
C9—C101.517 (6)C25—H25A0.9700
C9—H9A0.9700C25—H25B0.9700
C9—H9B0.9700C26—C301.361 (7)
C10—C111.526 (7)C26—C271.373 (7)
C10—H10A0.9700C27—C281.377 (8)
C10—H10B0.9700C27—H270.9300
C11—C121.485 (6)C28—C291.355 (7)
C11—H11A0.9700C28—H280.9300
C11—H11B0.9700C29—N51.335 (6)
C12—N11.332 (6)C29—H290.9300
C12—N21.357 (6)C30—N51.338 (6)
C13—C181.379 (6)C30—H300.9300
C13—C141.399 (7)N5—Cu2ii2.116 (4)
C13—N11.414 (6)N6—Cu1i2.079 (5)
C14—C151.387 (7)
N4—Cu1—N6i111.23 (18)C18—C17—C16121.3 (5)
N4—Cu1—Cl1141.19 (13)C18—C17—H17119.3
N6i—Cu1—Cl1107.12 (13)C16—C17—H17119.3
N1—Cu2—N5ii108.71 (17)C17—C18—C13118.0 (5)
N1—Cu2—Cl2142.93 (13)C17—C18—H18121.0
N5ii—Cu2—Cl2107.36 (13)C13—C18—H18121.0
N4—C1—N3113.3 (4)N2—C19—C20111.4 (4)
N4—C1—C8123.9 (5)N2—C19—H19A109.3
N3—C1—C8122.8 (5)C20—C19—H19A109.3
C7—C2—N4129.4 (5)N2—C19—H19B109.3
C7—C2—C3121.1 (5)C20—C19—H19B109.3
N4—C2—C3109.5 (4)H19A—C19—H19B108.0
C4—C3—N3131.1 (5)C21—C20—C24116.3 (5)
C4—C3—C2122.6 (5)C21—C20—C19119.5 (5)
N3—C3—C2106.3 (4)C24—C20—C19124.1 (5)
C3—C4—C5115.4 (6)C20—C21—C22119.2 (6)
C3—C4—H4122.3C20—C21—H21120.4
C5—C4—H4122.3C22—C21—H21120.4
C6—C5—C4122.0 (6)C21—C22—C23120.7 (6)
C6—C5—H5119.0C21—C22—H22119.7
C4—C5—H5119.0C23—C22—H22119.7
C7—C6—C5122.0 (6)N6—C23—C22120.6 (6)
C7—C6—H6119.0N6—C23—H23119.7
C5—C6—H6119.0C22—C23—H23119.7
C2—C7—C6116.8 (5)N6—C24—C20124.2 (5)
C2—C7—H7121.6N6—C24—H24117.9
C6—C7—H7121.6C20—C24—H24117.9
C1—C8—C9112.9 (4)N3—C25—C26112.2 (4)
C1—C8—H8A109.0N3—C25—H25A109.2
C9—C8—H8A109.0C26—C25—H25A109.2
C1—C8—H8B109.0N3—C25—H25B109.2
C9—C8—H8B109.0C26—C25—H25B109.2
H8A—C8—H8B107.8H25A—C25—H25B107.9
C10—C9—C8110.5 (4)C30—C26—C27117.0 (5)
C10—C9—H9A109.5C30—C26—C25121.1 (5)
C8—C9—H9A109.5C27—C26—C25121.8 (5)
C10—C9—H9B109.5C26—C27—C28120.1 (5)
C8—C9—H9B109.5C26—C27—H27120.0
H9A—C9—H9B108.1C28—C27—H27120.0
C9—C10—C11112.7 (4)C29—C28—C27118.6 (5)
C9—C10—H10A109.0C29—C28—H28120.7
C11—C10—H10A109.0C27—C28—H28120.7
C9—C10—H10B109.0N5—C29—C28123.0 (5)
C11—C10—H10B109.0N5—C29—H29118.5
H10A—C10—H10B107.8C28—C29—H29118.5
C12—C11—C10113.0 (4)N5—C30—C26124.3 (5)
C12—C11—H11A109.0N5—C30—H30117.8
C10—C11—H11A109.0C26—C30—H30117.8
C12—C11—H11B109.0C12—N1—C13106.8 (4)
C10—C11—H11B109.0C12—N1—Cu2124.7 (3)
H11A—C11—H11B107.8C13—N1—Cu2128.5 (3)
N1—C12—N2111.8 (4)C12—N2—C14107.5 (4)
N1—C12—C11123.4 (4)C12—N2—C19127.1 (4)
N2—C12—C11124.8 (5)C14—N2—C19124.1 (4)
C18—C13—C14120.0 (5)C1—N3—C3105.7 (4)
C18—C13—N1131.5 (5)C1—N3—C25128.3 (4)
C14—C13—N1108.5 (4)C3—N3—C25125.5 (4)
C15—C14—C13122.0 (5)C1—N4—C2105.2 (4)
C15—C14—N2132.5 (5)C1—N4—Cu1131.3 (3)
C13—C14—N2105.5 (4)C2—N4—Cu1123.3 (3)
C16—C15—C14116.9 (5)C29—N5—C30117.0 (5)
C16—C15—H15121.5C29—N5—Cu2ii120.4 (4)
C14—C15—H15121.5C30—N5—Cu2ii121.7 (4)
C15—C16—C17121.7 (5)C24—N6—C23118.9 (5)
C15—C16—H16119.1C24—N6—Cu1i119.8 (4)
C17—C16—H16119.1C23—N6—Cu1i121.0 (4)
C7—C2—C3—C41.2 (8)C18—C13—N1—C12179.1 (5)
N4—C2—C3—C4179.0 (5)C14—C13—N1—C120.9 (5)
C7—C2—C3—N3179.8 (5)C18—C13—N1—Cu23.1 (8)
N4—C2—C3—N30.0 (5)C14—C13—N1—Cu2176.9 (3)
N3—C3—C4—C5178.9 (5)N5ii—Cu2—N1—C1257.7 (4)
C2—C3—C4—C52.4 (8)Cl2—Cu2—N1—C12108.5 (4)
C3—C4—C5—C60.8 (10)N5ii—Cu2—N1—C13119.7 (4)
C4—C5—C6—C72.2 (11)Cl2—Cu2—N1—C1374.1 (5)
N4—C2—C7—C6178.0 (6)N1—C12—N2—C141.1 (6)
C3—C2—C7—C61.8 (8)C11—C12—N2—C14177.4 (5)
C5—C6—C7—C23.4 (10)N1—C12—N2—C19168.9 (5)
N4—C1—C8—C984.5 (6)C11—C12—N2—C199.6 (8)
N3—C1—C8—C994.6 (6)C15—C14—N2—C12178.7 (6)
C1—C8—C9—C10177.0 (5)C13—C14—N2—C120.5 (5)
C8—C9—C10—C11179.2 (4)C15—C14—N2—C1913.0 (9)
C9—C10—C11—C12164.8 (5)C13—C14—N2—C19168.7 (5)
C10—C11—C12—N161.0 (7)C20—C19—N2—C1279.5 (6)
C10—C11—C12—N2117.3 (6)C20—C19—N2—C1486.5 (6)
C18—C13—C14—C151.8 (8)N4—C1—N3—C30.8 (5)
N1—C13—C14—C15178.2 (5)C8—C1—N3—C3178.3 (4)
C18—C13—C14—N2179.7 (4)N4—C1—N3—C25173.0 (4)
N1—C13—C14—N20.2 (5)C8—C1—N3—C256.2 (8)
C13—C14—C15—C162.3 (9)C4—C3—N3—C1179.4 (6)
N2—C14—C15—C16179.7 (6)C2—C3—N3—C10.5 (5)
C14—C15—C16—C171.5 (10)C4—C3—N3—C258.2 (8)
C15—C16—C17—C180.1 (11)C2—C3—N3—C25172.9 (4)
C16—C17—C18—C130.5 (9)C26—C25—N3—C177.3 (6)
C14—C13—C18—C170.4 (8)C26—C25—N3—C393.5 (5)
N1—C13—C18—C17179.7 (5)N3—C1—N4—C20.8 (5)
N2—C19—C20—C21158.4 (5)C8—C1—N4—C2178.4 (5)
N2—C19—C20—C2424.6 (7)N3—C1—N4—Cu1176.0 (3)
C24—C20—C21—C220.1 (9)C8—C1—N4—Cu14.9 (7)
C19—C20—C21—C22177.1 (6)C7—C2—N4—C1179.3 (5)
C20—C21—C22—C231.5 (11)C3—C2—N4—C10.4 (5)
C21—C22—C23—N60.3 (11)C7—C2—N4—Cu13.6 (7)
C21—C20—C24—N62.8 (9)C3—C2—N4—Cu1176.7 (3)
C19—C20—C24—N6179.9 (5)N6i—Cu1—N4—C163.3 (5)
N3—C25—C26—C3048.3 (6)Cl1—Cu1—N4—C1126.0 (4)
N3—C25—C26—C27127.6 (5)N6i—Cu1—N4—C2113.0 (4)
C30—C26—C27—C280.4 (8)Cl1—Cu1—N4—C257.7 (5)
C25—C26—C27—C28176.4 (5)C28—C29—N5—C300.6 (9)
C26—C27—C28—C291.6 (9)C28—C29—N5—Cu2ii170.4 (5)
C27—C28—C29—N51.7 (10)C26—C30—N5—C290.7 (8)
C27—C26—C30—N50.8 (8)C26—C30—N5—Cu2ii169.0 (4)
C25—C26—C30—N5175.2 (5)C20—C24—N6—C234.1 (9)
N2—C12—N1—C131.2 (6)C20—C24—N6—Cu1i177.5 (4)
C11—C12—N1—C13177.3 (5)C22—C23—N6—C242.5 (9)
N2—C12—N1—Cu2176.7 (3)C22—C23—N6—Cu1i175.8 (5)
C11—C12—N1—Cu24.8 (7)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C30H28N6)]
Mr670.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4792 (11), 17.810 (2), 17.326 (2)
β (°) 97.412 (2)
V3)2900.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.23 × 0.20 × 0.09
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.66, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
17514, 6759, 3170
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.186, 0.97
No. of reflections6759
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N41.940 (4)Cu2—N11.942 (4)
Cu1—N6i2.079 (5)Cu2—N5ii2.116 (4)
Cu1—Cl12.1836 (16)Cu2—Cl22.1672 (16)
N4—Cu1—N6i111.23 (18)N1—Cu2—N5ii108.71 (17)
N4—Cu1—Cl1141.19 (13)N1—Cu2—Cl2142.93 (13)
N6i—Cu1—Cl1107.12 (13)N5ii—Cu2—Cl2107.36 (13)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z.
 

Acknowledgements

We thank the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, S.-L., Liu, J. & Ma, J.-F. (2007). Acta Cryst. E63, o4509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-J. & Xu, L. (2007). Acta Cryst. E63, m1993–m1994.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds