metal-organic compounds
trans-Dichloridobis(triphenylphosphine)palladium(II)†
aDepartamento de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, and bDepartament de Cristallografia, Universitat de Barcelona, Martí i Franquès, sn, E-08028 Barcelona, Spain
*Correspondence e-mail: josefina.pons@uab.es
The title compound, [PdCl2{P(C6H5)3}2], has a slightly distorted square-planar geometry, with the chloride ligands coordinated in a trans configuration. The Pd atom is located on a centre of inversion.
Related literature
For related literature, see: Ferguson et al. (1982); Kitano et al. (1983); La Monica & Ardizzoia (1997); Montoya et al. (2005); Montoya et al. (2006); Mukherjee (2000); Oilunkaniemi et al. (2003); Stark et al. (1997); Steyl (2006); Trofimenko (1972, 1986).
Experimental
Crystal data
|
Refinement
|
Data collection: MARXDS (Kabsch, 1988); cell AUTOMAR (Kabsch, 1988); data reduction: MARSCALE (Kabsch, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808008337/bt2685sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008337/bt2685Isup2.hkl
Treatment of 0.14 mmol (0.060 g) of [PdCl2(L1)] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine) with 0.28 mmol (0.054 g) of PPh3 in 10 ml of dichloromethane and 10 ml of methanol provokes the displacement of the pyrazolic ligand from the coordinative sphere of the metallic cation and the formation of trans-[PdCl2(PPh3)2]. This complex precipitates as a yellow solid and was filtered and dried under vacuum. Single crystals were obtained by recrystallization of the complex in dichloromethane/diethyl ether 1:1. Yield: 0.080 g (81%) - C36H30Cl2P2Pd (701.84). % C, 61.60; H, 4.30; found: C, 61.33; H, 4.42;. IR (KBr, cm-1): ν (C—H)ar 3047; δ (C—H)ar 1437; δ (C—H)oop 693. IR (polyethylene, cm-1): ν 376, 358 (Pd—P), ν (Pd—Cl). 1H NMR (250 MHz, [D1]-chloroform solution) δ = 7.71 (m, 2H, PPh3 ortho), 7.44–7.35 (m, 3H, PPh3). 13C{1H} NMR (63 MHz, [D1]-chloroform solution) δ = 135.5, 131.0, 130.0, 128.5 (PPh3). 31P{1H} NMR (81 MHz, [D1]-chloroform solution) δ = -21.1 (s, PPh3).
We had serious problems growing up good crystals of reasonable size and quality and, in all cases, we obtained twinned crystals with very broad reflections (bad mosaic structure). Measurement were done in a image plate difractometer which only measure in a single /f angle.
All H atoms were computed and refined, using a riding model, with an isotropic temperature factor equal to 1.2 times the equivalent temperature factor of the atom which are bonded.
Data collection: MARXDS (Kabsch, 1988); cell
AUTOMAR (Kabsch, 1988); data reduction: MARSCALE (Kabsch, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).[PdCl2(C18H15P)2] | F(000) = 712 |
Mr = 701.84 | Dx = 1.395 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation radiation, λ = 0.71073 Å |
a = 9.296 (5) Å | Cell parameters from 26 reflections |
b = 19.889 (8) Å | θ = 3–31° |
c = 10.621 (6) Å | µ = 0.83 mm−1 |
β = 121.71 (4)° | T = 293 K |
V = 1670.6 (15) Å3 | Prism, yellow |
Z = 2 | 0.2 × 0.17 × 0.16 mm |
MAR345 with image-plate detector diffractometer | 4898 independent reflections |
Radiation source: fine-focus sealed tube | 3143 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ scans | θmax = 33.3°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −14→12 |
Tmin = 0.85, Tmax = 0.87 | k = 0→30 |
4898 measured reflections | l = 0→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0269P)2] where P = (Fo2 + 2Fc2)/3 |
4898 reflections | (Δ/σ)max = 0.002 |
187 parameters | Δρmax = 0.56 e Å−3 |
7 restraints | Δρmin = −0.36 e Å−3 |
[PdCl2(C18H15P)2] | V = 1670.6 (15) Å3 |
Mr = 701.84 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.296 (5) Å | µ = 0.83 mm−1 |
b = 19.889 (8) Å | T = 293 K |
c = 10.621 (6) Å | 0.2 × 0.17 × 0.16 mm |
β = 121.71 (4)° |
MAR345 with image-plate detector diffractometer | 4898 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3143 reflections with I > 2σ(I) |
Tmin = 0.85, Tmax = 0.87 | Rint = 0.033 |
4898 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 7 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.56 e Å−3 |
4898 reflections | Δρmin = −0.36 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd | 1.0000 | 0.0000 | 0.5000 | 0.04342 (7) | |
P | 0.84764 (7) | 0.09596 (3) | 0.36120 (6) | 0.04430 (13) | |
Cl | 0.97931 (10) | 0.04208 (4) | 0.69271 (7) | 0.06833 (18) | |
C1 | 0.6712 (3) | 0.11530 (14) | 0.3892 (3) | 0.0580 (6) | |
C2 | 0.6470 (3) | 0.17570 (17) | 0.4357 (3) | 0.0657 (7) | |
H2 | 0.7217 | 0.2106 | 0.4529 | 0.079* | |
C3 | 0.5150 (5) | 0.1869 (2) | 0.4584 (4) | 0.0889 (10) | |
H3 | 0.5026 | 0.2279 | 0.4939 | 0.107* | |
C4 | 0.4034 (5) | 0.1351 (2) | 0.4262 (4) | 0.0969 (11) | |
H4 | 0.3102 | 0.1429 | 0.4346 | 0.116* | |
C5 | 0.4210 (5) | 0.0737 (2) | 0.3832 (4) | 0.0976 (11) | |
H5 | 0.3458 | 0.0394 | 0.3685 | 0.117* | |
C6 | 0.5576 (4) | 0.06221 (17) | 0.3603 (4) | 0.0811 (8) | |
H6 | 0.5711 | 0.0207 | 0.3273 | 0.097* | |
C7 | 0.7530 (3) | 0.09435 (13) | 0.1606 (3) | 0.0614 (6) | |
C8 | 0.5790 (4) | 0.09538 (17) | 0.0615 (3) | 0.0835 (9) | |
H8 | 0.5064 | 0.0960 | 0.0970 | 0.100* | |
C9 | 0.5128 (6) | 0.0955 (2) | −0.0899 (4) | 0.1180 (16) | |
H9 | 0.3962 | 0.0965 | −0.1547 | 0.142* | |
C10 | 0.6163 (7) | 0.0942 (2) | −0.1452 (4) | 0.1208 (16) | |
H10 | 0.5706 | 0.0937 | −0.2469 | 0.145* | |
C11 | 0.7918 (6) | 0.0935 (2) | −0.0474 (4) | 0.0996 (12) | |
H11 | 0.8631 | 0.0930 | −0.0842 | 0.120* | |
C12 | 0.8601 (4) | 0.09361 (17) | 0.1056 (3) | 0.0774 (8) | |
H12 | 0.9767 | 0.0932 | 0.1705 | 0.093* | |
C13 | 0.9779 (3) | 0.17318 (11) | 0.4177 (2) | 0.0491 (5) | |
C14 | 1.1113 (3) | 0.18023 (15) | 0.5592 (3) | 0.0659 (7) | |
H14 | 1.1381 | 0.1455 | 0.6266 | 0.079* | |
C15 | 1.2095 (5) | 0.2397 (2) | 0.6048 (4) | 0.0953 (11) | |
H15 | 1.3024 | 0.2438 | 0.7007 | 0.114* | |
C16 | 1.1653 (5) | 0.2915 (2) | 0.5048 (5) | 0.0961 (11) | |
H16 | 1.2282 | 0.3310 | 0.5349 | 0.115* | |
C17 | 1.0406 (5) | 0.28661 (18) | 0.3722 (5) | 0.0945 (11) | |
H17 | 1.0167 | 0.3220 | 0.3067 | 0.113* | |
C18 | 0.9362 (4) | 0.22755 (15) | 0.3218 (3) | 0.0761 (8) | |
H18 | 0.8419 | 0.2256 | 0.2262 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd | 0.04515 (12) | 0.04507 (12) | 0.04158 (11) | 0.00132 (11) | 0.02386 (9) | 0.00015 (10) |
P | 0.0441 (3) | 0.0449 (3) | 0.0430 (3) | 0.0013 (2) | 0.0222 (2) | 0.0019 (2) |
Cl | 0.0810 (4) | 0.0703 (4) | 0.0607 (3) | 0.0072 (3) | 0.0421 (3) | −0.0001 (3) |
C1 | 0.0524 (12) | 0.0642 (15) | 0.0558 (12) | 0.0073 (9) | 0.0274 (11) | 0.0050 (10) |
C2 | 0.0627 (16) | 0.0724 (19) | 0.0595 (15) | 0.0074 (13) | 0.0304 (13) | 0.0001 (11) |
C3 | 0.088 (2) | 0.104 (3) | 0.081 (2) | 0.018 (2) | 0.0492 (18) | −0.0020 (18) |
C4 | 0.081 (2) | 0.130 (4) | 0.092 (2) | 0.020 (2) | 0.0533 (19) | 0.014 (2) |
C5 | 0.075 (2) | 0.108 (3) | 0.115 (3) | −0.009 (2) | 0.054 (2) | 0.007 (2) |
C6 | 0.0719 (18) | 0.0721 (19) | 0.111 (2) | 0.0005 (13) | 0.0560 (18) | 0.0040 (18) |
C7 | 0.0689 (12) | 0.0598 (15) | 0.0481 (11) | 0.0004 (12) | 0.0256 (9) | 0.0019 (10) |
C8 | 0.0704 (13) | 0.094 (2) | 0.0730 (14) | 0.0068 (17) | 0.0284 (13) | 0.0058 (16) |
C9 | 0.111 (3) | 0.130 (3) | 0.0689 (15) | −0.001 (3) | 0.016 (2) | 0.002 (2) |
C10 | 0.148 (4) | 0.126 (4) | 0.070 (2) | −0.017 (3) | 0.045 (3) | −0.003 (2) |
C11 | 0.129 (3) | 0.111 (3) | 0.082 (2) | −0.022 (3) | 0.071 (2) | −0.007 (2) |
C12 | 0.0803 (19) | 0.091 (2) | 0.0613 (15) | −0.0088 (17) | 0.0374 (14) | 0.0021 (14) |
C13 | 0.0493 (11) | 0.0486 (12) | 0.0566 (10) | 0.0000 (9) | 0.0328 (9) | −0.0006 (9) |
C14 | 0.0632 (15) | 0.0688 (16) | 0.0605 (11) | −0.0008 (12) | 0.0290 (10) | −0.0002 (11) |
C15 | 0.088 (2) | 0.090 (2) | 0.100 (2) | −0.0232 (18) | 0.044 (2) | −0.020 (2) |
C16 | 0.103 (3) | 0.083 (2) | 0.122 (3) | −0.024 (2) | 0.073 (3) | −0.019 (2) |
C17 | 0.117 (3) | 0.071 (2) | 0.105 (3) | −0.008 (2) | 0.065 (2) | 0.0084 (19) |
C18 | 0.088 (2) | 0.0688 (19) | 0.0718 (17) | −0.0061 (16) | 0.0424 (16) | 0.0055 (13) |
Pd—Cl | 2.3111 (13) | C8—C9 | 1.387 (5) |
Pd—Cli | 2.3111 (13) | C8—H8 | 0.9300 |
Pd—P | 2.3721 (10) | C9—C10 | 1.366 (6) |
Pd—Pi | 2.3721 (10) | C9—H9 | 0.9300 |
P—C7 | 1.829 (3) | C10—C11 | 1.400 (6) |
P—C13 | 1.849 (2) | C10—H10 | 0.9300 |
P—C1 | 1.855 (3) | C11—C12 | 1.400 (4) |
C1—C2 | 1.361 (4) | C11—H11 | 0.9300 |
C1—C6 | 1.408 (4) | C12—H12 | 0.9300 |
C2—C3 | 1.387 (4) | C13—C14 | 1.362 (3) |
C2—H2 | 0.9300 | C13—C18 | 1.394 (4) |
C3—C4 | 1.373 (5) | C14—C15 | 1.416 (4) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.342 (5) | C15—C16 | 1.378 (5) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.432 (5) | C16—C17 | 1.273 (6) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | C17—C18 | 1.436 (5) |
C7—C8 | 1.391 (4) | C17—H17 | 0.9300 |
C7—C12 | 1.394 (4) | C18—H18 | 0.9300 |
Cl—Pd—Cli | 180.0 | C9—C8—C7 | 120.5 (4) |
Cl—Pd—P | 87.62 (4) | C9—C8—H8 | 119.8 |
Cli—Pd—P | 92.38 (4) | C7—C8—H8 | 119.8 |
Cl—Pd—Pi | 92.38 (4) | C10—C9—C8 | 121.0 (4) |
Cli—Pd—Pi | 87.62 (4) | C10—C9—H9 | 119.5 |
P—Pd—Pi | 180.0 | C8—C9—H9 | 119.5 |
C7—P—C13 | 102.99 (12) | C9—C10—C11 | 119.4 (4) |
C7—P—C1 | 105.43 (13) | C9—C10—H10 | 120.3 |
C13—P—C1 | 105.00 (12) | C11—C10—H10 | 120.3 |
C7—P—Pd | 118.32 (9) | C10—C11—C12 | 120.2 (4) |
C13—P—Pd | 113.03 (8) | C10—C11—H11 | 119.9 |
C1—P—Pd | 110.89 (9) | C12—C11—H11 | 119.9 |
C2—C1—C6 | 119.6 (3) | C7—C12—C11 | 119.9 (3) |
C2—C1—P | 124.7 (2) | C7—C12—H12 | 120.1 |
C6—C1—P | 115.7 (2) | C11—C12—H12 | 120.1 |
C1—C2—C3 | 122.3 (3) | C14—C13—C18 | 117.9 (2) |
C1—C2—H2 | 118.8 | C14—C13—P | 120.31 (19) |
C3—C2—H2 | 118.8 | C18—C13—P | 121.59 (19) |
C4—C3—C2 | 117.2 (4) | C13—C14—C15 | 120.9 (3) |
C4—C3—H3 | 121.4 | C13—C14—H14 | 119.6 |
C2—C3—H3 | 121.4 | C15—C14—H14 | 119.6 |
C5—C4—C3 | 123.8 (4) | C16—C15—C14 | 118.9 (3) |
C5—C4—H4 | 118.1 | C16—C15—H15 | 120.6 |
C3—C4—H4 | 118.1 | C14—C15—H15 | 120.6 |
C4—C5—C6 | 118.7 (4) | C17—C16—C15 | 121.7 (4) |
C4—C5—H5 | 120.6 | C17—C16—H16 | 119.2 |
C6—C5—H5 | 120.6 | C15—C16—H16 | 119.2 |
C1—C6—C5 | 118.2 (3) | C16—C17—C18 | 121.3 (3) |
C1—C6—H6 | 120.9 | C16—C17—H17 | 119.4 |
C5—C6—H6 | 120.9 | C18—C17—H17 | 119.4 |
C8—C7—C12 | 119.1 (3) | C13—C18—C17 | 119.2 (3) |
C8—C7—P | 122.5 (3) | C13—C18—H18 | 120.4 |
C12—C7—P | 118.4 (2) | C17—C18—H18 | 120.4 |
Cl—Pd—P—C1 | 41.9 (2) | Cl—Pd—P—C7 | 163.9 (2) |
Cl—Pd—P—C13 | −75.7 (2) |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C18H15P)2] |
Mr | 701.84 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.296 (5), 19.889 (8), 10.621 (6) |
β (°) | 121.71 (4) |
V (Å3) | 1670.6 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.2 × 0.17 × 0.16 |
Data collection | |
Diffractometer | MAR345 with image-plate detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.85, 0.87 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4898, 4898, 3143 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.772 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.077, 0.93 |
No. of reflections | 4898 |
No. of parameters | 187 |
No. of restraints | 7 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.36 |
Computer programs: MARXDS (Kabsch, 1988), AUTOMAR (Kabsch, 1988), MARSCALE (Kabsch, 1988), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).
Pd—Cl | 2.3111 (13) | Pd—P | 2.3721 (10) |
Cl—Pd—P | 87.62 (4) | Cli—Pd—P | 92.38 (4) |
Cl—Pd—P—C1 | 41.9 (2) | Cl—Pd—P—C7 | 163.9 (2) |
Cl—Pd—P—C13 | −75.7 (2) |
Symmetry code: (i) −x+2, −y, −z+1. |
Footnotes
†In memory of Professor Xavier Solans i Huguet, deceased September 3, 2007.
Acknowledgements
Support by the Spanish Ministerio de Educación y Cultura (Project CTQ2007–639137) is gratefully aknowledged.
References
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kabsch, W. (1988). J. Appl. Cryst. 21, 916–924. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017. CSD CrossRef CAS IUCr Journals Google Scholar
La Monica, G. & Ardizzoia, G. (1997). Prog. Inorg. Chem. 46, 151–239. CrossRef CAS Google Scholar
Montoya, V. J., Pons, J., Branchadell, V. & Ros, J. (2005). Tetrahedron, 61, 12377–12385. Web of Science CrossRef CAS Google Scholar
Montoya, V. J., Pons, J., Solans, X., Font-Bardía, M. & Ros, J. (2006). Inorg. Chim. Acta, 359, 25–34. Web of Science CSD CrossRef CAS Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, N. S. & Ahlgrén, M. (2003). J. Organomet. Chem. 678, 95–101. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC97000007. CrossRef Google Scholar
Steyl, G. (2006). Acta Cryst. E62, m1324–m1325. Web of Science CSD CrossRef IUCr Journals Google Scholar
Trofimenko, S. (1972). Chem. Rev. 72, 497–509. CrossRef CAS Web of Science Google Scholar
Trofimenko, S. (1986). Prog. Inorg. Chem. 34, 115–210. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of pyrazole derived ligands has been extensively studied in recent years (Trofimenko, 1972, 1986; La Monica et al., 1997; Mukherjee, 2000). Recently, in our laboratory the synthesis and characterization of a family of 1,3,5-pyrazole derived ligands have been developed (Montoya et al. 2005) and we have studied the reactivity towards divalent metal ions. The reaction of [PdCl2L1] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine with AgBF4 followed by the addition of PPh3 and NaBPh4 yields the compound [Pd(L1)(PPh3)2](BPh4)2 (Montoya et al., 2006). The title compound was obtained when the triphenylphosphine ligand was added before the precipitation of the chloride ions with AgBF4. In this way, PPh3 ligands displace L1 to form trans-[PdCl2(PPh3)2] (1).
Related compounds are trans-[PdCl2(PPh3)2] (2) (Ferguson et al., 1982), trans-[PdCl2(PPh3)2].C6H4Cl2 (Kitano et al.,1983), trans-[PdCl2(PPh3)2].2CHCl3 (Stark et al., 1997), trans-[PdCl2(PPh3)2].CH2Cl2 (Oilunkaniemi et al., 2003), and trans-[PdCl2(PPh3)2].C2H4Cl2 (Steyl, 2006). There are no solvent molecules present in the structure described in this paper. The same behaviour was found for the structure described by Ferguson (2), but differences have been found in the crystal systems and space groups [triclinic P1 (2); monoclinic P21/c, (1)]. Moreover, the Pd—Cl and Pd—P bond distances (2.3111 (13) Å and 2.3721 (10) Å, respectively) in complex (1) are slightly longer than those found in complex (2) (2.290 (1) Å and 2.337 (1) Å, respectively).