metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis(tri­phenyl­phosphine)palladium(II)

aDepartamento de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, and bDepartament de Cristallografia, Universitat de Barcelona, Martí i Franquès, sn, E-08028 Barcelona, Spain
*Correspondence e-mail: josefina.pons@uab.es

(Received 17 March 2008; accepted 27 March 2008; online 4 April 2008)

The title compound, [PdCl2{P(C6H5)3}2], has a slightly distorted square-planar geometry, with the chloride ligands coordinated in a trans configuration. The Pd atom is located on a centre of inversion.

Related literature

For related literature, see: Ferguson et al. (1982[Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679-2681.]); Kitano et al. (1983[Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017.]); La Monica & Ardizzoia (1997[La Monica, G. & Ardizzoia, G. (1997). Prog. Inorg. Chem. 46, 151-239.]); Montoya et al. (2005[Montoya, V. J., Pons, J., Branchadell, V. & Ros, J. (2005). Tetrahedron, 61, 12377-12385.]); Montoya et al. (2006[Montoya, V. J., Pons, J., Solans, X., Font-Bardía, M. & Ros, J. (2006). Inorg. Chim. Acta, 359, 25-34.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Oilunkaniemi et al. (2003[Oilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, N. S. & Ahlgrén, M. (2003). J. Organomet. Chem. 678, 95-101.]); Stark et al. (1997[Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC97000007.]); Steyl (2006[Steyl, G. (2006). Acta Cryst. E62, m1324-m1325.]); Trofimenko (1972[Trofimenko, S. (1972). Chem. Rev. 72, 497-509.], 1986[Trofimenko, S. (1986). Prog. Inorg. Chem. 34, 115-210.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C18H15P)2]

  • Mr = 701.84

  • Monoclinic, P 21 /c

  • a = 9.296 (5) Å

  • b = 19.889 (8) Å

  • c = 10.621 (6) Å

  • β = 121.71 (4)°

  • V = 1670.6 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 (2) K

  • 0.2 × 0.17 × 0.16 mm

Data collection
  • Mar Research MAR345 diffractometer with image-plate detector

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.87

  • 4898 measured reflections

  • 4898 independent reflections

  • 3143 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.077

  • S = 0.93

  • 4898 reflections

  • 187 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd—Cl 2.3111 (13)
Pd—P 2.3721 (10)
Cl—Pd—P 87.62 (4)
Cli—Pd—P 92.38 (4)
Cl—Pd—P—C1 41.9 (2)
Cl—Pd—P—C13 −75.7 (2)
Cl—Pd—P—C7 163.9 (2)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: MARXDS (Kabsch, 1988[Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.]); cell refinement: AUTOMAR (Kabsch, 1988[Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.]); data reduction: MARSCALE (Kabsch, 1988[Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The coordination chemistry of pyrazole derived ligands has been extensively studied in recent years (Trofimenko, 1972, 1986; La Monica et al., 1997; Mukherjee, 2000). Recently, in our laboratory the synthesis and characterization of a family of 1,3,5-pyrazole derived ligands have been developed (Montoya et al. 2005) and we have studied the reactivity towards divalent metal ions. The reaction of [PdCl2L1] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine with AgBF4 followed by the addition of PPh3 and NaBPh4 yields the compound [Pd(L1)(PPh3)2](BPh4)2 (Montoya et al., 2006). The title compound was obtained when the triphenylphosphine ligand was added before the precipitation of the chloride ions with AgBF4. In this way, PPh3 ligands displace L1 to form trans-[PdCl2(PPh3)2] (1).

Related compounds are trans-[PdCl2(PPh3)2] (2) (Ferguson et al., 1982), trans-[PdCl2(PPh3)2].C6H4Cl2 (Kitano et al.,1983), trans-[PdCl2(PPh3)2].2CHCl3 (Stark et al., 1997), trans-[PdCl2(PPh3)2].CH2Cl2 (Oilunkaniemi et al., 2003), and trans-[PdCl2(PPh3)2].C2H4Cl2 (Steyl, 2006). There are no solvent molecules present in the structure described in this paper. The same behaviour was found for the structure described by Ferguson (2), but differences have been found in the crystal systems and space groups [triclinic P1 (2); monoclinic P21/c, (1)]. Moreover, the Pd—Cl and Pd—P bond distances (2.3111 (13) Å and 2.3721 (10) Å, respectively) in complex (1) are slightly longer than those found in complex (2) (2.290 (1) Å and 2.337 (1) Å, respectively).

Related literature top

For related literature, see: Ferguson et al. (1982); Kitano et al. (1983); La Monica & Ardizzoia (1997); Montoya et al. (2005); Montoya et al. (2006); Mukherjee (2000); Oilunkaniemi et al. (2003); Stark et al. (1997); Steyl (2006); Trofimenko (1972, 1986).

Experimental top

Treatment of 0.14 mmol (0.060 g) of [PdCl2(L1)] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine) with 0.28 mmol (0.054 g) of PPh3 in 10 ml of dichloromethane and 10 ml of methanol provokes the displacement of the pyrazolic ligand from the coordinative sphere of the metallic cation and the formation of trans-[PdCl2(PPh3)2]. This complex precipitates as a yellow solid and was filtered and dried under vacuum. Single crystals were obtained by recrystallization of the complex in dichloromethane/diethyl ether 1:1. Yield: 0.080 g (81%) - C36H30Cl2P2Pd (701.84). % C, 61.60; H, 4.30; found: C, 61.33; H, 4.42;. IR (KBr, cm-1): ν (C—H)ar 3047; δ (C—H)ar 1437; δ (C—H)oop 693. IR (polyethylene, cm-1): ν 376, 358 (Pd—P), ν (Pd—Cl). 1H NMR (250 MHz, [D1]-chloroform solution) δ = 7.71 (m, 2H, PPh3 ortho), 7.44–7.35 (m, 3H, PPh3). 13C{1H} NMR (63 MHz, [D1]-chloroform solution) δ = 135.5, 131.0, 130.0, 128.5 (PPh3). 31P{1H} NMR (81 MHz, [D1]-chloroform solution) δ = -21.1 (s, PPh3).

Refinement top

We had serious problems growing up good crystals of reasonable size and quality and, in all cases, we obtained twinned crystals with very broad reflections (bad mosaic structure). Measurement were done in a image plate difractometer which only measure in a single /f angle.

All H atoms were computed and refined, using a riding model, with an isotropic temperature factor equal to 1.2 times the equivalent temperature factor of the atom which are bonded.

Computing details top

Data collection: MARXDS (Kabsch, 1988); cell refinement: AUTOMAR (Kabsch, 1988); data reduction: MARSCALE (Kabsch, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. trans-Dichlorobis(triphenylphosphine)palladium(II)
trans-Dichloridobis(triphenylphosphine)palladium(II) top
Crystal data top
[PdCl2(C18H15P)2]F(000) = 712
Mr = 701.84Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation radiation, λ = 0.71073 Å
a = 9.296 (5) ÅCell parameters from 26 reflections
b = 19.889 (8) Åθ = 3–31°
c = 10.621 (6) ŵ = 0.83 mm1
β = 121.71 (4)°T = 293 K
V = 1670.6 (15) Å3Prism, yellow
Z = 20.2 × 0.17 × 0.16 mm
Data collection top
MAR345 with image-plate detector
diffractometer
4898 independent reflections
Radiation source: fine-focus sealed tube3143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ scansθmax = 33.3°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1412
Tmin = 0.85, Tmax = 0.87k = 030
4898 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
4898 reflections(Δ/σ)max = 0.002
187 parametersΔρmax = 0.56 e Å3
7 restraintsΔρmin = 0.36 e Å3
Crystal data top
[PdCl2(C18H15P)2]V = 1670.6 (15) Å3
Mr = 701.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.296 (5) ŵ = 0.83 mm1
b = 19.889 (8) ÅT = 293 K
c = 10.621 (6) Å0.2 × 0.17 × 0.16 mm
β = 121.71 (4)°
Data collection top
MAR345 with image-plate detector
diffractometer
4898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3143 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.87Rint = 0.033
4898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0377 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.93Δρmax = 0.56 e Å3
4898 reflectionsΔρmin = 0.36 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd1.00000.00000.50000.04342 (7)
P0.84764 (7)0.09596 (3)0.36120 (6)0.04430 (13)
Cl0.97931 (10)0.04208 (4)0.69271 (7)0.06833 (18)
C10.6712 (3)0.11530 (14)0.3892 (3)0.0580 (6)
C20.6470 (3)0.17570 (17)0.4357 (3)0.0657 (7)
H20.72170.21060.45290.079*
C30.5150 (5)0.1869 (2)0.4584 (4)0.0889 (10)
H30.50260.22790.49390.107*
C40.4034 (5)0.1351 (2)0.4262 (4)0.0969 (11)
H40.31020.14290.43460.116*
C50.4210 (5)0.0737 (2)0.3832 (4)0.0976 (11)
H50.34580.03940.36850.117*
C60.5576 (4)0.06221 (17)0.3603 (4)0.0811 (8)
H60.57110.02070.32730.097*
C70.7530 (3)0.09435 (13)0.1606 (3)0.0614 (6)
C80.5790 (4)0.09538 (17)0.0615 (3)0.0835 (9)
H80.50640.09600.09700.100*
C90.5128 (6)0.0955 (2)0.0899 (4)0.1180 (16)
H90.39620.09650.15470.142*
C100.6163 (7)0.0942 (2)0.1452 (4)0.1208 (16)
H100.57060.09370.24690.145*
C110.7918 (6)0.0935 (2)0.0474 (4)0.0996 (12)
H110.86310.09300.08420.120*
C120.8601 (4)0.09361 (17)0.1056 (3)0.0774 (8)
H120.97670.09320.17050.093*
C130.9779 (3)0.17318 (11)0.4177 (2)0.0491 (5)
C141.1113 (3)0.18023 (15)0.5592 (3)0.0659 (7)
H141.13810.14550.62660.079*
C151.2095 (5)0.2397 (2)0.6048 (4)0.0953 (11)
H151.30240.24380.70070.114*
C161.1653 (5)0.2915 (2)0.5048 (5)0.0961 (11)
H161.22820.33100.53490.115*
C171.0406 (5)0.28661 (18)0.3722 (5)0.0945 (11)
H171.01670.32200.30670.113*
C180.9362 (4)0.22755 (15)0.3218 (3)0.0761 (8)
H180.84190.22560.22620.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.04515 (12)0.04507 (12)0.04158 (11)0.00132 (11)0.02386 (9)0.00015 (10)
P0.0441 (3)0.0449 (3)0.0430 (3)0.0013 (2)0.0222 (2)0.0019 (2)
Cl0.0810 (4)0.0703 (4)0.0607 (3)0.0072 (3)0.0421 (3)0.0001 (3)
C10.0524 (12)0.0642 (15)0.0558 (12)0.0073 (9)0.0274 (11)0.0050 (10)
C20.0627 (16)0.0724 (19)0.0595 (15)0.0074 (13)0.0304 (13)0.0001 (11)
C30.088 (2)0.104 (3)0.081 (2)0.018 (2)0.0492 (18)0.0020 (18)
C40.081 (2)0.130 (4)0.092 (2)0.020 (2)0.0533 (19)0.014 (2)
C50.075 (2)0.108 (3)0.115 (3)0.009 (2)0.054 (2)0.007 (2)
C60.0719 (18)0.0721 (19)0.111 (2)0.0005 (13)0.0560 (18)0.0040 (18)
C70.0689 (12)0.0598 (15)0.0481 (11)0.0004 (12)0.0256 (9)0.0019 (10)
C80.0704 (13)0.094 (2)0.0730 (14)0.0068 (17)0.0284 (13)0.0058 (16)
C90.111 (3)0.130 (3)0.0689 (15)0.001 (3)0.016 (2)0.002 (2)
C100.148 (4)0.126 (4)0.070 (2)0.017 (3)0.045 (3)0.003 (2)
C110.129 (3)0.111 (3)0.082 (2)0.022 (3)0.071 (2)0.007 (2)
C120.0803 (19)0.091 (2)0.0613 (15)0.0088 (17)0.0374 (14)0.0021 (14)
C130.0493 (11)0.0486 (12)0.0566 (10)0.0000 (9)0.0328 (9)0.0006 (9)
C140.0632 (15)0.0688 (16)0.0605 (11)0.0008 (12)0.0290 (10)0.0002 (11)
C150.088 (2)0.090 (2)0.100 (2)0.0232 (18)0.044 (2)0.020 (2)
C160.103 (3)0.083 (2)0.122 (3)0.024 (2)0.073 (3)0.019 (2)
C170.117 (3)0.071 (2)0.105 (3)0.008 (2)0.065 (2)0.0084 (19)
C180.088 (2)0.0688 (19)0.0718 (17)0.0061 (16)0.0424 (16)0.0055 (13)
Geometric parameters (Å, º) top
Pd—Cl2.3111 (13)C8—C91.387 (5)
Pd—Cli2.3111 (13)C8—H80.9300
Pd—P2.3721 (10)C9—C101.366 (6)
Pd—Pi2.3721 (10)C9—H90.9300
P—C71.829 (3)C10—C111.400 (6)
P—C131.849 (2)C10—H100.9300
P—C11.855 (3)C11—C121.400 (4)
C1—C21.361 (4)C11—H110.9300
C1—C61.408 (4)C12—H120.9300
C2—C31.387 (4)C13—C141.362 (3)
C2—H20.9300C13—C181.394 (4)
C3—C41.373 (5)C14—C151.416 (4)
C3—H30.9300C14—H140.9300
C4—C51.342 (5)C15—C161.378 (5)
C4—H40.9300C15—H150.9300
C5—C61.432 (5)C16—C171.273 (6)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.436 (5)
C7—C81.391 (4)C17—H170.9300
C7—C121.394 (4)C18—H180.9300
Cl—Pd—Cli180.0C9—C8—C7120.5 (4)
Cl—Pd—P87.62 (4)C9—C8—H8119.8
Cli—Pd—P92.38 (4)C7—C8—H8119.8
Cl—Pd—Pi92.38 (4)C10—C9—C8121.0 (4)
Cli—Pd—Pi87.62 (4)C10—C9—H9119.5
P—Pd—Pi180.0C8—C9—H9119.5
C7—P—C13102.99 (12)C9—C10—C11119.4 (4)
C7—P—C1105.43 (13)C9—C10—H10120.3
C13—P—C1105.00 (12)C11—C10—H10120.3
C7—P—Pd118.32 (9)C10—C11—C12120.2 (4)
C13—P—Pd113.03 (8)C10—C11—H11119.9
C1—P—Pd110.89 (9)C12—C11—H11119.9
C2—C1—C6119.6 (3)C7—C12—C11119.9 (3)
C2—C1—P124.7 (2)C7—C12—H12120.1
C6—C1—P115.7 (2)C11—C12—H12120.1
C1—C2—C3122.3 (3)C14—C13—C18117.9 (2)
C1—C2—H2118.8C14—C13—P120.31 (19)
C3—C2—H2118.8C18—C13—P121.59 (19)
C4—C3—C2117.2 (4)C13—C14—C15120.9 (3)
C4—C3—H3121.4C13—C14—H14119.6
C2—C3—H3121.4C15—C14—H14119.6
C5—C4—C3123.8 (4)C16—C15—C14118.9 (3)
C5—C4—H4118.1C16—C15—H15120.6
C3—C4—H4118.1C14—C15—H15120.6
C4—C5—C6118.7 (4)C17—C16—C15121.7 (4)
C4—C5—H5120.6C17—C16—H16119.2
C6—C5—H5120.6C15—C16—H16119.2
C1—C6—C5118.2 (3)C16—C17—C18121.3 (3)
C1—C6—H6120.9C16—C17—H17119.4
C5—C6—H6120.9C18—C17—H17119.4
C8—C7—C12119.1 (3)C13—C18—C17119.2 (3)
C8—C7—P122.5 (3)C13—C18—H18120.4
C12—C7—P118.4 (2)C17—C18—H18120.4
Cl—Pd—P—C141.9 (2)Cl—Pd—P—C7163.9 (2)
Cl—Pd—P—C1375.7 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C18H15P)2]
Mr701.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.296 (5), 19.889 (8), 10.621 (6)
β (°) 121.71 (4)
V3)1670.6 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.2 × 0.17 × 0.16
Data collection
DiffractometerMAR345 with image-plate detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.85, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
4898, 4898, 3143
Rint0.033
(sin θ/λ)max1)0.772
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.077, 0.93
No. of reflections4898
No. of parameters187
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.36

Computer programs: MARXDS (Kabsch, 1988), AUTOMAR (Kabsch, 1988), MARSCALE (Kabsch, 1988), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Pd—Cl2.3111 (13)Pd—P2.3721 (10)
Cl—Pd—P87.62 (4)Cli—Pd—P92.38 (4)
Cl—Pd—P—C141.9 (2)Cl—Pd—P—C7163.9 (2)
Cl—Pd—P—C1375.7 (2)
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

In memory of Professor Xavier Solans i Huguet, deceased September 3, 2007.

Acknowledgements

Support by the Spanish Ministerio de Educación y Cultura (Project CTQ2007–639137) is gratefully aknowledged.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabsch, W. (1988). J. Appl. Cryst. 21, 916–924.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLa Monica, G. & Ardizzoia, G. (1997). Prog. Inorg. Chem. 46, 151–239.  CrossRef CAS Google Scholar
First citationMontoya, V. J., Pons, J., Branchadell, V. & Ros, J. (2005). Tetrahedron, 61, 12377–12385.  Web of Science CrossRef CAS Google Scholar
First citationMontoya, V. J., Pons, J., Solans, X., Font-Bardía, M. & Ros, J. (2006). Inorg. Chim. Acta, 359, 25–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, N. S. & Ahlgrén, M. (2003). J. Organomet. Chem. 678, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC97000007.  CrossRef Google Scholar
First citationSteyl, G. (2006). Acta Cryst. E62, m1324–m1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 497–509.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1986). Prog. Inorg. Chem. 34, 115–210.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds