organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hydr­­oxy-5-methyl­phen­yl)ethanone [(1H-indol-3-­yl)acet­yl]hydrazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

The indolyl –NH group of the title Schiff base, C19H19N3O2, forms a hydrogen bond to the –OH group of an inversion-related mol­ecule, resulting in a hydrogen-bonded dimer; adjacent dimers are further linked through an inter­dimer N—H⋯O hydrogen bond involving the –C(=O)–NH–N=fragment to form a linear ribbon that runs along the a axis.

Related literature

For a related compound that co-crystallizes with 3-indolylacetyl­hydrazine, see: Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N3O2

  • Mr = 321.37

  • Triclinic, [P \overline 1]

  • a = 4.6812 (9) Å

  • b = 12.419 (3) Å

  • c = 14.202 (3) Å

  • α = 109.919 (3)°

  • β = 91.710 (3)°

  • γ = 90.751 (3)°

  • V = 775.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.40 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 4854 measured reflections

  • 3490 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.196

  • S = 1.01

  • 3490 reflections

  • 231 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (3) 1.75 (2) 2.540 (3) 153 (4)
N2—H2n⋯O2i 0.85 (3) 2.05 (3) 2.884 (3) 166 (4)
N3—H3n⋯O1ii 0.85 (3) 2.08 (3) 2.913 (3) 166 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The Schiff base that is derived by condensing 2,4-dihydroxyacetophenone with indole-3-acetylhydrazine crystallizes as a co-crystal with unchanged indole-3-acetylhydrazine (Ali et al., 2007). The reason for the formation of the co-crystal appears to be related to the ease of hydrogen bond formation as the parent ketone itself has two possible donor sites.

In the similar synthesis but with 2-hydroxy-5-methylacetophenone, only the pure Schiff base is obtained (Scheme I, Fig. 1). The indolyl –NH unit forms a hydrogen bond to the –OH unit of an inversion-related molecule to furnish a hydrogen-bonded dimer; adjacent dimers are further linked through an inter-dimer N–H···O hydrogen involving the –C(=O)–NH–N= fragment to form a linear ribbon chain that runs along the shortest axis of the triclinic unit cell (Fig. 2). The hydroxy group itself engages in intramolecular hydrogen bonding.

Related literature top

For a related compound that co-crystallizes with 3-indolylacetylhydrazine, see: Ali et al. (2007).

Experimental top

Indole-3-acetylhydrazine (0.55 g, 4 mmol) and 2-hydroxy-5-methylacetophenone (0.52 g, 4 mmol) were dissolved in ethanol (100 ml). The reactants were heated under reflux for 1 h. The solvent was removed to give the tSchiff base, which was purified by recrystallization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H/O–H 0.85±0.01 Å; their displacement parameters were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of C19H19N3O2; ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure. Dashed lines denote H atoms.
1-(2-Hydroxy-5-methylphenyl)ethanone [(1H-indol-3-yl)acetyl]hydrazone top
Crystal data top
C19H19N3O2Z = 2
Mr = 321.37F(000) = 340
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6812 (9) ÅCell parameters from 985 reflections
b = 12.419 (3) Åθ = 3.0–28.3°
c = 14.202 (3) ŵ = 0.09 mm1
α = 109.919 (3)°T = 100 K
β = 91.710 (3)°Plate, pale yellow
γ = 90.751 (3)°0.40 × 0.13 × 0.05 mm
V = 775.7 (3) Å3
Data collection top
Bruker SMART APEXII
diffractometer
1905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
ω scansh = 63
4854 measured reflectionsk = 1516
3490 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0894P)2]
where P = (Fo2 + 2Fc2)/3
3490 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
C19H19N3O2γ = 90.751 (3)°
Mr = 321.37V = 775.7 (3) Å3
Triclinic, P1Z = 2
a = 4.6812 (9) ÅMo Kα radiation
b = 12.419 (3) ŵ = 0.09 mm1
c = 14.202 (3) ÅT = 100 K
α = 109.919 (3)°0.40 × 0.13 × 0.05 mm
β = 91.710 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
1905 reflections with I > 2σ(I)
4854 measured reflectionsRint = 0.052
3490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0603 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
3490 reflectionsΔρmin = 0.46 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1765 (5)0.39859 (17)0.64793 (15)0.0232 (5)
H1O0.097 (9)0.335 (2)0.617 (3)0.072 (15)*
O20.5909 (4)0.08863 (17)0.43759 (15)0.0259 (5)
N10.0800 (5)0.21073 (19)0.61339 (17)0.0198 (5)
N20.2703 (5)0.1345 (2)0.55630 (18)0.0205 (6)
H2N0.287 (9)0.0706 (17)0.565 (3)0.055 (12)*
N30.8788 (6)0.3894 (2)0.33999 (18)0.0224 (6)
H3N0.989 (6)0.4440 (19)0.339 (2)0.021 (8)*
C10.2982 (6)0.3739 (2)0.7244 (2)0.0201 (6)
C20.4852 (6)0.4525 (3)0.7818 (2)0.0241 (7)
H20.52150.52060.76760.029*
C30.6195 (6)0.4327 (3)0.8597 (2)0.0251 (7)
H30.74800.48740.89850.030*
C40.5699 (6)0.3340 (3)0.8822 (2)0.0243 (7)
C50.3819 (6)0.2562 (3)0.8235 (2)0.0226 (7)
H50.34870.18790.83770.027*
C60.2391 (6)0.2731 (2)0.7447 (2)0.0184 (6)
C70.7165 (7)0.3105 (3)0.9666 (2)0.0302 (8)
H7A0.57270.29561.01190.045*
H7B0.84520.24340.93900.045*
H7C0.82690.37721.00370.045*
C80.0378 (6)0.1881 (2)0.6856 (2)0.0196 (6)
C90.0212 (7)0.0829 (2)0.7102 (2)0.0282 (7)
H9A0.22480.06590.70270.042*
H9B0.09260.01830.66460.042*
H9C0.02990.09520.77940.042*
C100.4156 (6)0.1572 (2)0.4841 (2)0.0199 (6)
C110.3479 (6)0.2641 (2)0.4612 (2)0.0216 (6)
H11A0.15360.25490.42960.026*
H11B0.34540.32940.52510.026*
C120.5528 (6)0.2925 (2)0.3940 (2)0.0201 (6)
C130.7169 (6)0.3905 (2)0.4185 (2)0.0216 (6)
H130.71810.45080.48130.026*
C140.6163 (6)0.2267 (2)0.2925 (2)0.0207 (6)
C150.5219 (7)0.1205 (3)0.2253 (2)0.0255 (7)
H150.38380.07590.24440.031*
C160.6313 (7)0.0813 (3)0.1311 (2)0.0306 (8)
H160.56770.00900.08510.037*
C170.8355 (7)0.1464 (3)0.1020 (2)0.0302 (8)
H170.90790.11740.03650.036*
C180.9324 (7)0.2513 (3)0.1664 (2)0.0274 (7)
H181.06980.29560.14670.033*
C190.8215 (6)0.2900 (3)0.2617 (2)0.0231 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0203 (11)0.0229 (11)0.0256 (11)0.0048 (9)0.0064 (9)0.0065 (9)
O20.0220 (12)0.0258 (11)0.0294 (11)0.0088 (9)0.0113 (9)0.0077 (9)
N10.0119 (12)0.0211 (12)0.0228 (12)0.0040 (10)0.0046 (10)0.0024 (10)
N20.0178 (13)0.0187 (12)0.0235 (12)0.0040 (11)0.0058 (10)0.0048 (11)
N30.0184 (14)0.0229 (13)0.0264 (13)0.0008 (11)0.0045 (11)0.0087 (11)
C10.0122 (14)0.0250 (15)0.0211 (14)0.0001 (12)0.0006 (12)0.0056 (12)
C20.0172 (16)0.0236 (15)0.0281 (16)0.0032 (13)0.0008 (13)0.0043 (13)
C30.0157 (15)0.0297 (16)0.0248 (16)0.0078 (13)0.0046 (13)0.0022 (13)
C40.0135 (15)0.0329 (17)0.0237 (15)0.0019 (13)0.0026 (12)0.0060 (13)
C50.0149 (15)0.0263 (15)0.0250 (15)0.0020 (12)0.0009 (12)0.0064 (13)
C60.0118 (14)0.0206 (14)0.0202 (14)0.0012 (12)0.0005 (11)0.0036 (12)
C70.0214 (17)0.0393 (19)0.0274 (16)0.0050 (15)0.0085 (14)0.0076 (14)
C80.0136 (15)0.0210 (14)0.0213 (14)0.0005 (12)0.0014 (12)0.0032 (12)
C90.0292 (18)0.0226 (15)0.0329 (17)0.0065 (14)0.0135 (14)0.0085 (14)
C100.0151 (14)0.0196 (14)0.0215 (14)0.0026 (12)0.0002 (12)0.0023 (12)
C110.0171 (15)0.0228 (14)0.0244 (15)0.0069 (12)0.0046 (12)0.0068 (12)
C120.0127 (14)0.0238 (15)0.0248 (15)0.0078 (12)0.0039 (12)0.0091 (12)
C130.0173 (15)0.0225 (15)0.0252 (15)0.0074 (12)0.0045 (12)0.0079 (12)
C140.0122 (14)0.0263 (15)0.0247 (15)0.0061 (12)0.0023 (12)0.0098 (12)
C150.0224 (16)0.0256 (15)0.0267 (16)0.0013 (13)0.0012 (13)0.0065 (13)
C160.0322 (19)0.0290 (17)0.0283 (17)0.0021 (15)0.0023 (15)0.0069 (14)
C170.0321 (19)0.0381 (18)0.0192 (15)0.0105 (15)0.0048 (14)0.0074 (14)
C180.0219 (17)0.0321 (17)0.0300 (16)0.0034 (14)0.0078 (14)0.0123 (14)
C190.0159 (15)0.0263 (15)0.0275 (16)0.0064 (12)0.0021 (13)0.0096 (13)
Geometric parameters (Å, º) top
O1—C11.364 (3)C7—H7C0.9800
O1—H1O0.85 (3)C8—C91.491 (4)
O2—C101.226 (3)C9—H9A0.9800
N1—C81.288 (3)C9—H9B0.9800
N1—N21.375 (3)C9—H9C0.9800
N2—C101.352 (4)C10—C111.505 (4)
N2—H2N0.85 (3)C11—C121.494 (4)
N3—C131.363 (4)C11—H11A0.9900
N3—C191.367 (4)C11—H11B0.9900
N3—H3N0.85 (3)C12—C131.365 (4)
C1—C21.381 (4)C12—C141.436 (4)
C1—C61.406 (4)C13—H130.9500
C2—C31.379 (4)C14—C151.396 (4)
C2—H20.9500C14—C191.404 (4)
C3—C41.389 (4)C15—C161.376 (4)
C3—H30.9500C15—H150.9500
C4—C51.386 (4)C16—C171.404 (5)
C4—C71.508 (4)C16—H160.9500
C5—C61.394 (4)C17—C181.374 (4)
C5—H50.9500C17—H170.9500
C6—C81.475 (4)C18—C191.392 (4)
C7—H7A0.9800C18—H180.9500
C7—H7B0.9800
C1—O1—H1O101 (3)H9A—C9—H9B109.5
C8—N1—N2118.6 (2)C8—C9—H9C109.5
C10—N2—N1121.3 (2)H9A—C9—H9C109.5
C10—N2—H2N121 (3)H9B—C9—H9C109.5
N1—N2—H2N118 (3)O2—C10—N2119.0 (3)
C13—N3—C19109.0 (2)O2—C10—C11122.4 (3)
C13—N3—H3N125 (2)N2—C10—C11118.6 (2)
C19—N3—H3N126 (2)C12—C11—C10114.4 (2)
O1—C1—C2117.0 (3)C12—C11—H11A108.7
O1—C1—C6122.2 (2)C10—C11—H11A108.7
C2—C1—C6120.8 (3)C12—C11—H11B108.7
C3—C2—C1120.4 (3)C10—C11—H11B108.7
C3—C2—H2119.8H11A—C11—H11B107.6
C1—C2—H2119.8C13—C12—C14106.0 (3)
C2—C3—C4121.0 (3)C13—C12—C11125.4 (3)
C2—C3—H3119.5C14—C12—C11128.6 (3)
C4—C3—H3119.5N3—C13—C12110.4 (3)
C5—C4—C3117.7 (3)N3—C13—H13124.8
C5—C4—C7120.6 (3)C12—C13—H13124.8
C3—C4—C7121.8 (3)C15—C14—C19118.7 (3)
C4—C5—C6123.4 (3)C15—C14—C12134.3 (3)
C4—C5—H5118.3C19—C14—C12107.0 (3)
C6—C5—H5118.3C16—C15—C14119.2 (3)
C5—C6—C1116.8 (3)C16—C15—H15120.4
C5—C6—C8121.1 (3)C14—C15—H15120.4
C1—C6—C8122.1 (3)C15—C16—C17121.0 (3)
C4—C7—H7A109.5C15—C16—H16119.5
C4—C7—H7B109.5C17—C16—H16119.5
H7A—C7—H7B109.5C18—C17—C16121.2 (3)
C4—C7—H7C109.5C18—C17—H17119.4
H7A—C7—H7C109.5C16—C17—H17119.4
H7B—C7—H7C109.5C17—C18—C19117.5 (3)
N1—C8—C6116.3 (3)C17—C18—H18121.3
N1—C8—C9123.2 (3)C19—C18—H18121.3
C6—C8—C9120.5 (2)N3—C19—C18129.9 (3)
C8—C9—H9A109.5N3—C19—C14107.6 (2)
C8—C9—H9B109.5C18—C19—C14122.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.75 (2)2.540 (3)153 (4)
N2—H2n···O2i0.85 (3)2.05 (3)2.884 (3)166 (4)
N3—H3n···O1ii0.85 (3)2.08 (3)2.913 (3)166 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H19N3O2
Mr321.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.6812 (9), 12.419 (3), 14.202 (3)
α, β, γ (°)109.919 (3), 91.710 (3), 90.751 (3)
V3)775.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4854, 3490, 1905
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.196, 1.01
No. of reflections3490
No. of parameters231
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.75 (2)2.540 (3)153 (4)
N2—H2n···O2i0.85 (3)2.05 (3)2.884 (3)166 (4)
N3—H3n···O1ii0.85 (3)2.08 (3)2.913 (3)166 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

References

First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds