metal-organic compounds
Di-μ-iodido-bis{[(4-fluorobenzoylmethylene)triphenyl-λ5-phosphorane]iodidomercury(II)}
aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title complex, [Hg2I4(C26H20FOP)2], the HgII centre is four-coordinate with one short Hg—I bond [2.6895 (7) Å], one Hg—C bond and two asymmetric bridging Hg—I bonds with distances of 2.7780 (8) and 3.2599 (8) Å. The title molecule has a crystallographic inversion centre at the centroid of the four-membered ring formed by the two Hg atoms and two I atoms. The crystal packing is stabilized by C—H⋯O hydrogen bonds.
Related literature
For related literature, see: Baenziger et al. (1978); Belluco et al. (1996); Bent (1961); Holy et al. (1976); Kalyanasundari et al. (1995, 1999); Karami (2007); Laavanya et al. (2001); Uson et al. (1985).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808008611/bt2690sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008611/bt2690Isup2.hkl
To a chloroform solution (15 ml) of triphenylphosphine (1 mmol) was added 2-bromo-4-fluoroacetophenone (1 mmol) and the resulting mixture was stirred for 12 h. The solution was filtered off, and the precipitate washed with diethyl-ether and air-dried. Further treatment with aqueous NaOH solution (0.5M) led to elimination of HBr, giving the free ligand precursors FBPPY. To a solution of FBPPY (0.100 g, 0.25 mmol) in acetone (5 ml) was added mercury (II) iodide (0.114 g, 0.25 mmol). The mixture was stirred for 12 h. On concentration by removing the solvent by vacuum, a pale yellow precipitate was obtained. The products were washed with benzene and dried in vacuo. Yield: 81%, M.p. 214 °C. Analysis calculated for C52H40F2Hg2I4O2P2:C 36.6, H 2.4%. Found: C 36.45, H 2.3%, 1H NMR: 4.62(d, 1H, CH, 2JPH= 5.5 Hz), 7.1–8 (m, 19H, Ph) p.p.m. and 31P NMR: 20.34 p.p.m. (Karami, 2007).
H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP-3 view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. | |
Fig. 2. The packing and intermolecular hydrogen bonding interactions of the title compound. |
[Hg2I4(C26H20FOP)2] | Z = 1 |
Mr = 1705.56 | F(000) = 788 |
Triclinic, P1 | Dx = 2.150 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0346 (16) Å | Cell parameters from 47681 reflections |
b = 11.8594 (19) Å | θ = 1.7–28.3° |
c = 13.235 (2) Å | µ = 8.27 mm−1 |
α = 92.513 (13)° | T = 293 K |
β = 111.293 (12)° | Plate, colourless |
γ = 113.117 (12)° | 0.26 × 0.17 × 0.08 mm |
V = 1317.4 (4) Å3 |
Stoe IPDSII diffractometer | 5553 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 4486 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.156 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.0°, θmin = 1.7° |
ω scans | h = −12→12 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −15→15 |
Tmin = 0.222, Tmax = 0.558 | l = −16→16 |
16225 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7953P] where P = (Fo2 + 2Fc2)/3 |
5553 reflections | (Δ/σ)max = 0.001 |
289 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Hg2I4(C26H20FOP)2] | γ = 113.117 (12)° |
Mr = 1705.56 | V = 1317.4 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.0346 (16) Å | Mo Kα radiation |
b = 11.8594 (19) Å | µ = 8.27 mm−1 |
c = 13.235 (2) Å | T = 293 K |
α = 92.513 (13)° | 0.26 × 0.17 × 0.08 mm |
β = 111.293 (12)° |
Stoe IPDSII diffractometer | 5553 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 4486 reflections with I > 2σ(I) |
Tmin = 0.222, Tmax = 0.558 | Rint = 0.156 |
16225 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.00 e Å−3 |
5553 reflections | Δρmin = −0.67 e Å−3 |
289 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.53557 (3) | 0.65438 (3) | 0.42856 (2) | 0.0581 (1) | |
I1 | 0.29177 (6) | 0.52860 (4) | 0.49338 (4) | 0.0650 (2) | |
I2 | 0.76379 (6) | 0.86528 (5) | 0.57953 (4) | 0.0727 (2) | |
P1 | 0.58806 (17) | 0.74049 (12) | 0.20232 (11) | 0.0389 (4) | |
F1 | −0.1102 (8) | 0.0461 (5) | 0.0631 (6) | 0.133 (3) | |
O1 | 0.2430 (5) | 0.6313 (4) | 0.1541 (4) | 0.0613 (16) | |
C1 | 0.7783 (7) | 0.7396 (5) | 0.2330 (5) | 0.0445 (17) | |
C2 | 0.8580 (8) | 0.7185 (7) | 0.3349 (5) | 0.062 (2) | |
C3 | 0.9949 (9) | 0.7038 (8) | 0.3566 (6) | 0.069 (3) | |
C4 | 1.0532 (9) | 0.7126 (8) | 0.2760 (7) | 0.074 (3) | |
C5 | 0.9746 (10) | 0.7344 (9) | 0.1756 (7) | 0.080 (3) | |
C6 | 0.8373 (9) | 0.7470 (7) | 0.1524 (7) | 0.065 (3) | |
C7 | 0.6204 (7) | 0.8894 (5) | 0.2717 (5) | 0.0442 (17) | |
C8 | 0.7676 (8) | 0.9929 (6) | 0.3076 (6) | 0.061 (2) | |
C9 | 0.7889 (11) | 1.1059 (6) | 0.3622 (7) | 0.076 (3) | |
C10 | 0.6674 (12) | 1.1146 (7) | 0.3787 (6) | 0.078 (3) | |
C11 | 0.5234 (11) | 1.0153 (7) | 0.3426 (7) | 0.072 (3) | |
C12 | 0.4974 (9) | 0.9025 (6) | 0.2876 (6) | 0.061 (2) | |
C13 | 0.4969 (7) | 0.7270 (5) | 0.0543 (5) | 0.0423 (17) | |
C14 | 0.5281 (8) | 0.8339 (6) | 0.0109 (5) | 0.0548 (19) | |
C15 | 0.4683 (10) | 0.8238 (7) | −0.1016 (6) | 0.068 (3) | |
C16 | 0.3754 (10) | 0.7082 (7) | −0.1731 (6) | 0.069 (2) | |
C17 | 0.3410 (9) | 0.6005 (6) | −0.1319 (5) | 0.061 (2) | |
C18 | 0.4023 (8) | 0.6097 (5) | −0.0176 (5) | 0.0527 (19) | |
C19 | 0.4769 (6) | 0.6070 (5) | 0.2440 (4) | 0.0401 (17) | |
C20 | 0.3012 (7) | 0.5596 (6) | 0.1835 (5) | 0.0463 (17) | |
C21 | 0.1984 (7) | 0.4217 (6) | 0.1586 (5) | 0.0539 (19) | |
C22 | 0.0358 (9) | 0.3826 (8) | 0.1146 (8) | 0.078 (3) | |
C23 | −0.0692 (11) | 0.2564 (10) | 0.0825 (10) | 0.107 (4) | |
C24 | −0.0083 (12) | 0.1715 (8) | 0.0951 (8) | 0.088 (3) | |
C25 | 0.1511 (11) | 0.2031 (7) | 0.1366 (7) | 0.081 (3) | |
C26 | 0.2542 (8) | 0.3310 (6) | 0.1691 (6) | 0.063 (2) | |
H2 | 0.81880 | 0.71420 | 0.38910 | 0.0740* | |
H3 | 1.04710 | 0.68820 | 0.42450 | 0.0830* | |
H4 | 1.14600 | 0.70380 | 0.28970 | 0.0890* | |
H5 | 1.01540 | 0.74060 | 0.12210 | 0.0960* | |
H6 | 0.78430 | 0.76050 | 0.08360 | 0.0780* | |
H8 | 0.85050 | 0.98690 | 0.29550 | 0.0730* | |
H9 | 0.88720 | 1.17580 | 0.38750 | 0.0900* | |
H10 | 0.68370 | 1.19050 | 0.41570 | 0.0940* | |
H11 | 0.44150 | 1.02310 | 0.35490 | 0.0860* | |
H12 | 0.39720 | 0.83480 | 0.26100 | 0.0730* | |
H14 | 0.59000 | 0.91280 | 0.05830 | 0.0650* | |
H15 | 0.49070 | 0.89610 | −0.13000 | 0.0820* | |
H16 | 0.33570 | 0.70260 | −0.24940 | 0.0820* | |
H17 | 0.27730 | 0.52210 | −0.18020 | 0.0730* | |
H18 | 0.38010 | 0.53740 | 0.01070 | 0.0630* | |
H19 | 0.50550 | 0.53940 | 0.23070 | 0.0480* | |
H22 | −0.00370 | 0.44230 | 0.10640 | 0.0940* | |
H23 | −0.17860 | 0.23040 | 0.05300 | 0.1290* | |
H25 | 0.18880 | 0.14240 | 0.14280 | 0.0970* | |
H26 | 0.36340 | 0.35610 | 0.19860 | 0.0750* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0633 (2) | 0.0652 (2) | 0.0484 (1) | 0.0285 (1) | 0.0256 (1) | 0.0120 (1) |
I1 | 0.0709 (3) | 0.0725 (3) | 0.0830 (3) | 0.0449 (2) | 0.0483 (3) | 0.0334 (2) |
I2 | 0.0717 (3) | 0.0778 (3) | 0.0580 (3) | 0.0308 (2) | 0.0200 (2) | −0.0026 (2) |
P1 | 0.0372 (7) | 0.0383 (7) | 0.0415 (7) | 0.0166 (6) | 0.0172 (6) | 0.0033 (5) |
F1 | 0.110 (4) | 0.067 (3) | 0.161 (6) | −0.022 (3) | 0.062 (4) | −0.009 (3) |
O1 | 0.049 (2) | 0.065 (3) | 0.074 (3) | 0.033 (2) | 0.021 (2) | 0.015 (2) |
C1 | 0.043 (3) | 0.039 (3) | 0.045 (3) | 0.014 (2) | 0.017 (2) | −0.002 (2) |
C2 | 0.050 (4) | 0.094 (5) | 0.036 (3) | 0.036 (3) | 0.010 (3) | −0.003 (3) |
C3 | 0.054 (4) | 0.094 (5) | 0.049 (4) | 0.037 (4) | 0.009 (3) | −0.005 (3) |
C4 | 0.050 (4) | 0.094 (5) | 0.079 (5) | 0.036 (4) | 0.025 (4) | 0.003 (4) |
C5 | 0.077 (5) | 0.120 (7) | 0.084 (5) | 0.056 (5) | 0.059 (5) | 0.041 (5) |
C6 | 0.066 (4) | 0.083 (5) | 0.070 (4) | 0.040 (4) | 0.043 (4) | 0.030 (3) |
C7 | 0.048 (3) | 0.046 (3) | 0.044 (3) | 0.027 (3) | 0.018 (2) | 0.008 (2) |
C8 | 0.057 (4) | 0.056 (4) | 0.055 (4) | 0.024 (3) | 0.010 (3) | −0.007 (3) |
C9 | 0.078 (5) | 0.045 (4) | 0.081 (5) | 0.019 (3) | 0.020 (4) | −0.006 (3) |
C10 | 0.110 (7) | 0.061 (4) | 0.067 (4) | 0.059 (5) | 0.019 (4) | −0.001 (3) |
C11 | 0.089 (6) | 0.071 (5) | 0.074 (5) | 0.051 (4) | 0.036 (4) | 0.007 (4) |
C12 | 0.068 (4) | 0.058 (4) | 0.070 (4) | 0.036 (3) | 0.033 (4) | 0.011 (3) |
C13 | 0.041 (3) | 0.043 (3) | 0.046 (3) | 0.021 (2) | 0.019 (2) | 0.005 (2) |
C14 | 0.057 (4) | 0.048 (3) | 0.049 (3) | 0.018 (3) | 0.017 (3) | 0.007 (2) |
C15 | 0.088 (5) | 0.059 (4) | 0.059 (4) | 0.031 (4) | 0.033 (4) | 0.022 (3) |
C16 | 0.090 (5) | 0.074 (4) | 0.042 (3) | 0.044 (4) | 0.019 (3) | 0.009 (3) |
C17 | 0.073 (4) | 0.058 (4) | 0.045 (3) | 0.031 (3) | 0.015 (3) | −0.002 (3) |
C18 | 0.060 (4) | 0.038 (3) | 0.055 (3) | 0.020 (3) | 0.021 (3) | 0.002 (2) |
C19 | 0.040 (3) | 0.043 (3) | 0.041 (3) | 0.019 (2) | 0.020 (2) | 0.008 (2) |
C20 | 0.041 (3) | 0.056 (3) | 0.042 (3) | 0.022 (3) | 0.017 (2) | 0.007 (2) |
C21 | 0.045 (3) | 0.059 (4) | 0.048 (3) | 0.011 (3) | 0.023 (3) | 0.003 (3) |
C22 | 0.048 (4) | 0.074 (5) | 0.105 (6) | 0.017 (4) | 0.036 (4) | 0.002 (4) |
C23 | 0.052 (5) | 0.098 (7) | 0.136 (9) | −0.001 (5) | 0.043 (5) | −0.018 (6) |
C24 | 0.088 (6) | 0.061 (5) | 0.082 (5) | −0.008 (5) | 0.046 (5) | −0.001 (4) |
C25 | 0.087 (6) | 0.052 (4) | 0.077 (5) | 0.012 (4) | 0.025 (4) | 0.012 (3) |
C26 | 0.052 (4) | 0.054 (4) | 0.059 (4) | 0.010 (3) | 0.014 (3) | 0.007 (3) |
Hg1—I1 | 2.7780 (8) | C19—C20 | 1.491 (10) |
Hg1—I2 | 2.6895 (7) | C20—C21 | 1.493 (9) |
Hg1—C19 | 2.281 (5) | C21—C22 | 1.382 (13) |
Hg1—I1i | 3.2599 (8) | C21—C26 | 1.385 (11) |
P1—C1 | 1.806 (8) | C22—C23 | 1.383 (15) |
P1—C7 | 1.805 (6) | C23—C24 | 1.356 (17) |
P1—C13 | 1.805 (6) | C24—C25 | 1.369 (17) |
P1—C19 | 1.787 (6) | C25—C26 | 1.394 (11) |
F1—C24 | 1.369 (11) | C2—H2 | 0.9300 |
O1—C20 | 1.212 (9) | C3—H3 | 0.9300 |
C1—C2 | 1.387 (9) | C4—H4 | 0.9300 |
C1—C6 | 1.387 (12) | C5—H5 | 0.9300 |
C2—C3 | 1.381 (13) | C6—H6 | 0.9300 |
C3—C4 | 1.381 (13) | C8—H8 | 0.9300 |
C4—C5 | 1.373 (12) | C9—H9 | 0.9300 |
C5—C6 | 1.369 (15) | C10—H10 | 0.9300 |
C7—C8 | 1.389 (10) | C11—H11 | 0.9300 |
C7—C12 | 1.389 (13) | C12—H12 | 0.9300 |
C8—C9 | 1.394 (11) | C14—H14 | 0.9300 |
C9—C10 | 1.355 (17) | C15—H15 | 0.9300 |
C10—C11 | 1.348 (14) | C16—H16 | 0.9300 |
C11—C12 | 1.375 (11) | C17—H17 | 0.9300 |
C13—C14 | 1.385 (9) | C18—H18 | 0.9300 |
C13—C18 | 1.390 (8) | C19—H19 | 0.9800 |
C14—C15 | 1.368 (9) | C22—H22 | 0.9300 |
C15—C16 | 1.373 (11) | C23—H23 | 0.9300 |
C16—C17 | 1.378 (10) | C25—H25 | 0.9300 |
C17—C18 | 1.391 (9) | C26—H26 | 0.9300 |
Hg1···C2 | 3.694 (9) | C15···H23x | 3.0300 |
Hg1···C12 | 3.624 (7) | C19···H2 | 2.9400 |
Hg1···C26 | 4.216 (7) | C19···H18 | 2.8500 |
Hg1···H2 | 2.8900 | C19···H26 | 2.6800 |
Hg1···H12 | 3.4500 | C20···H12 | 3.0300 |
Hg1···H26 | 3.9000 | C20···H18 | 2.7100 |
I2···C25i | 3.739 (8) | C23···H5ix | 2.9500 |
I2···C7 | 3.863 (6) | C24···H5ix | 3.0900 |
I1···H2i | 3.3300 | C26···H19 | 2.5600 |
I1···H10ii | 3.3800 | H2···Hg1 | 2.8900 |
I2···H2 | 3.3600 | H2···I2 | 3.3600 |
I2···H8iii | 3.2500 | H2···C19 | 2.9400 |
I2···H11ii | 3.1800 | H2···I1i | 3.3300 |
F1···C14iv | 3.292 (11) | H3···C9iii | 3.0800 |
F1···H14iv | 2.7700 | H3···C10iii | 3.0400 |
O1···C4v | 3.271 (11) | H3···H10iii | 2.5200 |
O1···C12 | 3.124 (8) | H4···O1vi | 2.5900 |
O1···C13 | 3.135 (9) | H4···H12vi | 2.5700 |
O1···C18 | 3.270 (9) | H5···C23ix | 2.9500 |
O1···H4v | 2.5900 | H5···C24ix | 3.0900 |
O1···H12 | 2.3200 | H6···C13 | 2.6300 |
O1···H22 | 2.4400 | H6···C14 | 2.8900 |
C2···Hg1 | 3.694 (9) | H8···C1 | 2.7400 |
C4···O1vi | 3.271 (11) | H8···I2iii | 3.2500 |
C6···C14 | 3.558 (12) | H10···I1ii | 3.3800 |
C7···I2 | 3.863 (6) | H10···H3iii | 2.5200 |
C10···C16vii | 3.517 (11) | H10···H16vii | 2.5700 |
C12···O1 | 3.124 (8) | H11···I2ii | 3.1800 |
C12···Hg1 | 3.624 (7) | H12···Hg1 | 3.4500 |
C13···O1 | 3.135 (9) | H12···O1 | 2.3200 |
C14···C6 | 3.558 (12) | H12···C20 | 3.0300 |
C14···F1viii | 3.292 (11) | H12···H4v | 2.5700 |
C16···C10vii | 3.517 (11) | H14···F1viii | 2.7700 |
C18···C20 | 3.177 (10) | H14···C7 | 2.7700 |
C18···O1 | 3.270 (9) | H14···C8 | 3.0200 |
C20···C18 | 3.177 (10) | H15···C10vii | 3.0600 |
C25···I2i | 3.739 (8) | H15···C11vii | 3.0200 |
C26···Hg1 | 4.216 (7) | H16···C10vii | 2.8200 |
C1···H17ix | 2.9300 | H16···H10vii | 2.5700 |
C1···H8 | 2.7400 | H17···C1ix | 2.9300 |
C2···H19 | 3.0400 | H17···C2ix | 2.9300 |
C2···H17ix | 2.9300 | H17···C3ix | 3.0300 |
C3···H17ix | 3.0300 | H17···C6ix | 3.0300 |
C6···H17ix | 3.0300 | H18···C19 | 2.8500 |
C7···H14 | 2.7700 | H18···C20 | 2.7100 |
C8···H14 | 3.0200 | H19···C2 | 3.0400 |
C9···H3iii | 3.0800 | H19···C26 | 2.5600 |
C10···H15vii | 3.0600 | H19···H26 | 2.0000 |
C10···H16vii | 2.8200 | H22···O1 | 2.4400 |
C10···H3iii | 3.0400 | H23···C14x | 3.0500 |
C11···H15vii | 3.0200 | H23···C15x | 3.0300 |
C13···H6 | 2.6300 | H26···Hg1 | 3.9000 |
C14···H23x | 3.0500 | H26···C19 | 2.6800 |
C14···H6 | 2.8900 | H26···H19 | 2.0000 |
I1—Hg1—I2 | 111.82 (2) | C22—C23—C24 | 118.2 (11) |
I1—Hg1—C19 | 116.49 (16) | F1—C24—C23 | 119.1 (11) |
I1—Hg1—I1i | 94.17 (2) | F1—C24—C25 | 116.9 (9) |
I2—Hg1—C19 | 127.98 (15) | C23—C24—C25 | 124.0 (9) |
I1i—Hg1—I2 | 97.77 (2) | C24—C25—C26 | 116.6 (9) |
I1i—Hg1—C19 | 96.90 (16) | C21—C26—C25 | 121.8 (8) |
Hg1—I1—Hg1i | 85.84 (2) | C1—C2—H2 | 120.00 |
C1—P1—C7 | 109.1 (3) | C3—C2—H2 | 120.00 |
C1—P1—C13 | 106.6 (3) | C2—C3—H3 | 121.00 |
C1—P1—C19 | 106.1 (3) | C4—C3—H3 | 120.00 |
C7—P1—C13 | 108.4 (3) | C3—C4—H4 | 120.00 |
C7—P1—C19 | 114.7 (3) | C5—C4—H4 | 120.00 |
C13—P1—C19 | 111.6 (3) | C4—C5—H5 | 119.00 |
P1—C1—C2 | 119.1 (6) | C6—C5—H5 | 119.00 |
P1—C1—C6 | 120.8 (6) | C1—C6—H6 | 120.00 |
C2—C1—C6 | 119.7 (8) | C5—C6—H6 | 121.00 |
C1—C2—C3 | 120.7 (7) | C7—C8—H8 | 121.00 |
C2—C3—C4 | 119.0 (7) | C9—C8—H8 | 121.00 |
C3—C4—C5 | 120.1 (10) | C8—C9—H9 | 120.00 |
C4—C5—C6 | 121.4 (9) | C10—C9—H9 | 120.00 |
C1—C6—C5 | 119.1 (8) | C9—C10—H10 | 119.00 |
P1—C7—C8 | 120.4 (6) | C11—C10—H10 | 119.00 |
P1—C7—C12 | 120.4 (5) | C10—C11—H11 | 120.00 |
C8—C7—C12 | 119.2 (6) | C12—C11—H11 | 120.00 |
C7—C8—C9 | 118.8 (8) | C7—C12—H12 | 120.00 |
C8—C9—C10 | 120.4 (8) | C11—C12—H12 | 120.00 |
C9—C10—C11 | 121.3 (8) | C13—C14—H14 | 120.00 |
C10—C11—C12 | 120.1 (11) | C15—C14—H14 | 120.00 |
C7—C12—C11 | 120.2 (8) | C14—C15—H15 | 120.00 |
P1—C13—C14 | 120.0 (5) | C16—C15—H15 | 120.00 |
P1—C13—C18 | 120.6 (4) | C15—C16—H16 | 120.00 |
C14—C13—C18 | 119.3 (6) | C17—C16—H16 | 120.00 |
C13—C14—C15 | 120.2 (6) | C16—C17—H17 | 120.00 |
C14—C15—C16 | 120.8 (7) | C18—C17—H17 | 120.00 |
C15—C16—C17 | 120.1 (7) | C13—C18—H18 | 120.00 |
C16—C17—C18 | 119.6 (6) | C17—C18—H18 | 120.00 |
C13—C18—C17 | 120.0 (5) | Hg1—C19—H19 | 109.00 |
Hg1—C19—P1 | 110.7 (3) | P1—C19—H19 | 109.00 |
Hg1—C19—C20 | 106.7 (4) | C20—C19—H19 | 109.00 |
P1—C19—C20 | 113.5 (4) | C21—C22—H22 | 119.00 |
O1—C20—C19 | 120.8 (6) | C23—C22—H22 | 119.00 |
O1—C20—C21 | 120.6 (7) | C22—C23—H23 | 121.00 |
C19—C20—C21 | 118.6 (6) | C24—C23—H23 | 121.00 |
C20—C21—C22 | 117.0 (7) | C24—C25—H25 | 122.00 |
C20—C21—C26 | 124.6 (7) | C26—C25—H25 | 122.00 |
C22—C21—C26 | 118.3 (7) | C21—C26—H26 | 119.00 |
C21—C22—C23 | 121.2 (9) | C25—C26—H26 | 119.00 |
I2—Hg1—I1—Hg1i | −100.09 (2) | P1—C1—C2—C3 | 173.0 (6) |
C19—Hg1—I1—Hg1i | 99.83 (17) | C1—C2—C3—C4 | 1.1 (12) |
I1i—Hg1—I1—Hg1i | 0.00 (4) | C2—C3—C4—C5 | −0.7 (13) |
I1i—Hg1i—I1—Hg1 | 0.00 (5) | C3—C4—C5—C6 | −0.5 (14) |
I2i—Hg1i—I1—Hg1 | −112.71 (2) | C4—C5—C6—C1 | 1.1 (13) |
C19i—Hg1i—I1—Hg1 | 117.34 (16) | C8—C7—C12—C11 | −2.8 (10) |
I2—Hg1—C19—C20 | −131.8 (3) | P1—C7—C8—C9 | −179.1 (6) |
I1i—Hg1—C19—C20 | 122.7 (4) | P1—C7—C12—C11 | 178.6 (6) |
I2—Hg1—C19—P1 | −7.9 (4) | C12—C7—C8—C9 | 2.3 (10) |
I1i—Hg1—C19—P1 | −113.4 (3) | C7—C8—C9—C10 | −0.7 (11) |
I1—Hg1—C19—P1 | 148.4 (2) | C8—C9—C10—C11 | −0.4 (12) |
I1—Hg1—C19—C20 | 24.6 (4) | C9—C10—C11—C12 | −0.2 (12) |
C19—P1—C1—C2 | −45.5 (6) | C10—C11—C12—C7 | 1.8 (12) |
C7—P1—C1—C6 | −108.0 (6) | P1—C13—C14—C15 | 175.4 (7) |
C7—P1—C1—C2 | 78.5 (6) | C18—C13—C14—C15 | −1.0 (13) |
C13—P1—C1—C2 | −164.6 (5) | P1—C13—C18—C17 | −175.9 (7) |
C1—P1—C7—C12 | −162.1 (5) | C14—C13—C18—C17 | 0.5 (13) |
C13—P1—C1—C6 | 8.8 (6) | C13—C14—C15—C16 | 0.7 (15) |
C19—P1—C1—C6 | 127.9 (5) | C14—C15—C16—C17 | 0.1 (16) |
C7—P1—C19—C20 | 84.7 (5) | C15—C16—C17—C18 | −0.7 (16) |
C13—P1—C19—C20 | −39.2 (5) | C16—C17—C18—C13 | 0.3 (14) |
C7—P1—C13—C14 | 29.7 (8) | Hg1—C19—C20—O1 | 89.0 (6) |
C19—P1—C13—C14 | 157.0 (6) | Hg1—C19—C20—C21 | −91.8 (6) |
C1—P1—C13—C18 | 88.8 (7) | P1—C19—C20—O1 | −33.2 (8) |
C13—P1—C7—C12 | 82.2 (6) | P1—C19—C20—C21 | 146.1 (5) |
C19—P1—C7—C12 | −43.3 (6) | O1—C20—C21—C22 | −8.3 (10) |
C1—P1—C19—C20 | −154.9 (4) | O1—C20—C21—C26 | 166.9 (7) |
C1—P1—C13—C14 | −87.6 (7) | C19—C20—C21—C22 | 172.4 (7) |
C7—P1—C13—C18 | −154.0 (7) | C19—C20—C21—C26 | −12.4 (10) |
C19—P1—C13—C18 | −26.7 (8) | C20—C21—C22—C23 | 176.0 (9) |
C1—P1—C7—C8 | 19.3 (6) | C26—C21—C22—C23 | 0.5 (13) |
C13—P1—C19—Hg1 | −159.0 (3) | C20—C21—C26—C25 | −175.1 (7) |
C13—P1—C7—C8 | −96.3 (6) | C22—C21—C26—C25 | 0.0 (11) |
C7—P1—C19—Hg1 | −35.2 (4) | C21—C22—C23—C24 | −0.2 (16) |
C1—P1—C19—Hg1 | 85.3 (3) | C22—C23—C24—F1 | −179.5 (9) |
C19—P1—C7—C8 | 138.1 (5) | C22—C23—C24—C25 | −0.8 (17) |
C2—C1—C6—C5 | −0.6 (11) | F1—C24—C25—C26 | −180.0 (8) |
P1—C1—C6—C5 | −174.0 (6) | C23—C24—C25—C26 | 1.3 (15) |
C6—C1—C2—C3 | −0.5 (11) | C24—C25—C26—C21 | −0.9 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x−1, y−1, z; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x+1, −y+2, −z; (viii) x+1, y+1, z; (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1vi | 0.93 | 2.59 | 3.271 (11) | 131 |
C12—H12···O1 | 0.93 | 2.32 | 3.124 (8) | 144 |
C22—H22···O1 | 0.93 | 2.44 | 2.749 (10) | 100 |
Symmetry code: (vi) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Hg2I4(C26H20FOP)2] |
Mr | 1705.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.0346 (16), 11.8594 (19), 13.235 (2) |
α, β, γ (°) | 92.513 (13), 111.293 (12), 113.117 (12) |
V (Å3) | 1317.4 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 8.27 |
Crystal size (mm) | 0.26 × 0.17 × 0.08 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.222, 0.558 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16225, 5553, 4486 |
Rint | 0.156 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.089, 1.05 |
No. of reflections | 5553 |
No. of parameters | 289 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −0.67 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Hg1—I1 | 2.7780 (8) | Hg1—C19 | 2.281 (5) |
Hg1—I2 | 2.6895 (7) | Hg1—I1i | 3.2599 (8) |
I1—Hg1—I2 | 111.82 (2) | I1i—Hg1—I2 | 97.77 (2) |
I1—Hg1—C19 | 116.49 (16) | I1i—Hg1—C19 | 96.90 (16) |
I1—Hg1—I1i | 94.17 (2) | Hg1—I1—Hg1i | 85.84 (2) |
I2—Hg1—C19 | 127.98 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1ii | 0.93 | 2.59 | 3.271 (11) | 131 |
C12—H12···O1 | 0.93 | 2.32 | 3.124 (8) | 144 |
C22—H22···O1 | 0.93 | 2.44 | 2.749 (10) | 100 |
Symmetry code: (ii) x+1, y, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F. 279 of the University Research Fund).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baenziger, N. C., Flynn, R. M., Swenson, D. C. & Holy, N. L. (1978). Acta Cryst. B34, 2300-2301. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Belluco, U., Michelin, R. A., Bertini, R., Facchin, G., Pace, G., Zanotto, L., Mozzon, M., Furlan, M. & Zangrando, E. (1996). Inorg. Chim. Acta, 252, 355–366. CSD CrossRef CAS Web of Science Google Scholar
Bent, H. A. (1961). Chem. Rev. 61, 275–311. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Holy, N. L., Baenziger, N. C., Flynn, R. M. & Swenson, D. C. (1976). J. Am. Chem. Soc. 98, 7823–7824. CrossRef CAS Web of Science Google Scholar
Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33–36. CSD CrossRef CAS Google Scholar
Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103–109. CSD CrossRef CAS Web of Science Google Scholar
Karami, K. (2007). J. Chem. Res. (S), pp. 725–727. Web of Science CrossRef Google Scholar
Laavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660–1661. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Uson, R., Fornies, J., Navarro, R., Espinet, P. & Mendivil, C. (1985). J. Organomet. Chem. 290, 125–131. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dimeric structure adopted by complexes is in contrast to the O-coordinated trinuclear mercury (II) complex of the phosphorusylide Ph3PCHCOPh (Kalyanasundari et al., 1999), but is similar to the structure of trans-di-liododiiodobis (triphenyl phosphoniumcyclopentadienylide) dimercury(II) reported by Baenziger et al. (Baenziger et al., 1978) and the C-coordinated dinuclear mercury(II) halide complexes of Ph3CHCOPh(BPPY) (Kalyanasundari et al., 1995). The C-coordination of FBPPY is in stark contrast to the O-coordination of the phosphorus ylide, Ph3PC(COMe)(COPh) (ABPPY), to a HgII centre (Laavanya et al., 2001). The difference in coordination mode between ABPPY and FBPPY to HgII can be rationalized in terms of the electronic properties and steric requirements of the ylides. The nucleophilicity of the carbanion in ABPPY is less than for FBPPY; this is due to the additional delocalization of the ylide electron density in ABPPY which is facilitated by the second carbonyl group. This will reduce the ability of ABPPY to bind via the ylidic carbon. Belluco et al. have studied steric influences on the coordination modes of ylide molecules to Pt(II) systems (Belluco et al., 1996). These authors concluded that the preferred coordination mode is via the ylidic carbon, but that steric hindrance around the metal centre or the ylidic carbon will necessitate O-coordination. Indeed, this trend is reflected here, both BPPY and FBPPY are slightly less sterically demanding than ABPPY, and both are C-coordinated to HgII.
The title molecule has a crystallographic inversion symmety in the mid-point of the four-membered ring formed by the two Hg atoms and two I atoms (Fig.1). The crystal structure of the title complex reveals that the HgII centre forms four close contacts with sp3 hybridization and has a 4-coordinate environment with one short Hg—I bond 2.6895 (7), one Hg—C bond and two asymmetric bridging Hg—I bonds at distances of 2.7780 (8) and 3.2599 (8) Å in complex [[{HgI2(FBPPY)}2]. The significant shortening of the Hg—C bond length, 2.281 (5) Å compared to analogous distances in [(C6H5)3PCHCOC6H5HgI2]2 (Kalyanasundari et al.,1995) and in [(C5H4P(C6H5)3HgI2]2 (Holy et al., 1976) [2.312 (13) and 2.292 (8) Å, respectively] must be attributed to the use of mercury orbitals with high s character for bonding to the ylidic carbon. The use of non-equivalent hybrid orbitals with high s character to bond to low electronegative atoms was proposed by Bent in the concept of isovalent hybridization to account for the variation in bond lengths and bond angles around a central atom (Bent, 1961). The terminal Hg—I bond length, 2.7780 (8) Å is comparable to 2.615 Å observed in the case of Hg2l4(ABPPY)2, which has a tetrahedral coordination environment around mercury with a bridging structure (Laavanya et al., 2001). The two bridged Hg—I bonds fall within the range 2.778 - 3.25994 Å reported for other structures (Laavanya et al., 2001) containing chloro bridged mercury. The angles around mercury vary from 94.17 (2) to111.82 (2) for I—Hg—I, a very distorted tetrahedral environment. This distortion must be due to the higher s character of the sp3 hybrid mercury orbitals involved in the above bonds and the formation of a strong Iodo bridge between the Hg atoms which requires the internal I—Hg—I angle to be considerably smaller. The stabilized resonance structure for the title ylide is destroyed by the complexes formation. On the other hand, the bond length of P(1)—C(19) in the similar ylide is 1.706 Å (Uson et al., 1985) which shows that the above bond is considerably elongated to 1.787 (6) Å in complex [{HgI2(FBPPY)}2]. The adaptation of dimeric structur in HgII ylide complex may be explained by both the preference of HgII to four coordination and the stability of the 18 electron configuration around HgII.