metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m612-m613

Di-μ-iodido-bis­­{[(4-fluoro­benzoyl­methyl­ene)tri­phenyl-λ5-phospho­rane]iodido­mercury(II)}

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 March 2008; accepted 31 March 2008; online 2 April 2008)

In the title complex, [Hg2I4(C26H20FOP)2], the HgII centre is four-coordinate with one short Hg—I bond [2.6895 (7) Å], one Hg—C bond and two asymmetric bridging Hg—I bonds with distances of 2.7780 (8) and 3.2599 (8) Å. The title mol­ecule has a crystallographic inversion centre at the centroid of the four-membered ring formed by the two Hg atoms and two I atoms. The crystal packing is stabilized by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Baenziger et al. (1978[Baenziger, N. C., Flynn, R. M., Swenson, D. C. & Holy, N. L. (1978). Acta Cryst. B34, 2300-2301.]); Belluco et al. (1996[Belluco, U., Michelin, R. A., Bertini, R., Facchin, G., Pace, G., Zanotto, L., Mozzon, M., Furlan, M. & Zangrando, E. (1996). Inorg. Chim. Acta, 252, 355-366.]); Bent (1961[Bent, H. A. (1961). Chem. Rev. 61, 275-311.]); Holy et al. (1976[Holy, N. L., Baenziger, N. C., Flynn, R. M. & Swenson, D. C. (1976). J. Am. Chem. Soc. 98, 7823-7824.]); Kalyanasundari et al. (1995[Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103-109.], 1999[Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33-36.]); Karami (2007[Karami, K. (2007). J. Chem. Res. (S), pp. 725-727.]); Laavanya et al. (2001[Laavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660-1661.]); Uson et al. (1985[Uson, R., Fornies, J., Navarro, R., Espinet, P. & Mendivil, C. (1985). J. Organomet. Chem. 290, 125-131.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2I4(C26H20FOP)2]

  • Mr = 1705.56

  • Triclinic, [P \overline 1]

  • a = 10.0346 (16) Å

  • b = 11.8594 (19) Å

  • c = 13.235 (2) Å

  • α = 92.513 (13)°

  • β = 111.293 (12)°

  • γ = 113.117 (12)°

  • V = 1317.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.27 mm−1

  • T = 293 (2) K

  • 0.26 × 0.17 × 0.08 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.222, Tmax = 0.558

  • 16225 measured reflections

  • 5553 independent reflections

  • 4486 reflections with I > 2σ(I)

  • Rint = 0.156

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.089

  • S = 1.05

  • 5553 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—I1 2.7780 (8)
Hg1—I2 2.6895 (7)
Hg1—C19 2.281 (5)
Hg1—I1i 3.2599 (8)
I1—Hg1—I2 111.82 (2)
I1—Hg1—C19 116.49 (16)
I1—Hg1—I1i 94.17 (2)
I2—Hg1—C19 127.98 (15)
I1i—Hg1—I2 97.77 (2)
I1i—Hg1—C19 96.90 (16)
Hg1—I1—Hg1i 85.84 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1ii 0.93 2.59 3.271 (11) 131
C12—H12⋯O1 0.93 2.32 3.124 (8) 144
C22—H22⋯O1 0.93 2.44 2.749 (10) 100
Symmetry code: (ii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The dimeric structure adopted by complexes is in contrast to the O-coordinated trinuclear mercury (II) complex of the phosphorusylide Ph3PCHCOPh (Kalyanasundari et al., 1999), but is similar to the structure of trans-di-liododiiodobis (triphenyl phosphoniumcyclopentadienylide) dimercury(II) reported by Baenziger et al. (Baenziger et al., 1978) and the C-coordinated dinuclear mercury(II) halide complexes of Ph3CHCOPh(BPPY) (Kalyanasundari et al., 1995). The C-coordination of FBPPY is in stark contrast to the O-coordination of the phosphorus ylide, Ph3PC(COMe)(COPh) (ABPPY), to a HgII centre (Laavanya et al., 2001). The difference in coordination mode between ABPPY and FBPPY to HgII can be rationalized in terms of the electronic properties and steric requirements of the ylides. The nucleophilicity of the carbanion in ABPPY is less than for FBPPY; this is due to the additional delocalization of the ylide electron density in ABPPY which is facilitated by the second carbonyl group. This will reduce the ability of ABPPY to bind via the ylidic carbon. Belluco et al. have studied steric influences on the coordination modes of ylide molecules to Pt(II) systems (Belluco et al., 1996). These authors concluded that the preferred coordination mode is via the ylidic carbon, but that steric hindrance around the metal centre or the ylidic carbon will necessitate O-coordination. Indeed, this trend is reflected here, both BPPY and FBPPY are slightly less sterically demanding than ABPPY, and both are C-coordinated to HgII.

The title molecule has a crystallographic inversion symmety in the mid-point of the four-membered ring formed by the two Hg atoms and two I atoms (Fig.1). The crystal structure of the title complex reveals that the HgII centre forms four close contacts with sp3 hybridization and has a 4-coordinate environment with one short Hg—I bond 2.6895 (7), one Hg—C bond and two asymmetric bridging Hg—I bonds at distances of 2.7780 (8) and 3.2599 (8) Å in complex [[{HgI2(FBPPY)}2]. The significant shortening of the Hg—C bond length, 2.281 (5) Å compared to analogous distances in [(C6H5)3PCHCOC6H5HgI2]2 (Kalyanasundari et al.,1995) and in [(C5H4P(C6H5)3HgI2]2 (Holy et al., 1976) [2.312 (13) and 2.292 (8) Å, respectively] must be attributed to the use of mercury orbitals with high s character for bonding to the ylidic carbon. The use of non-equivalent hybrid orbitals with high s character to bond to low electronegative atoms was proposed by Bent in the concept of isovalent hybridization to account for the variation in bond lengths and bond angles around a central atom (Bent, 1961). The terminal Hg—I bond length, 2.7780 (8) Å is comparable to 2.615 Å observed in the case of Hg2l4(ABPPY)2, which has a tetrahedral coordination environment around mercury with a bridging structure (Laavanya et al., 2001). The two bridged Hg—I bonds fall within the range 2.778 - 3.25994 Å reported for other structures (Laavanya et al., 2001) containing chloro bridged mercury. The angles around mercury vary from 94.17 (2) to111.82 (2) for I—Hg—I, a very distorted tetrahedral environment. This distortion must be due to the higher s character of the sp3 hybrid mercury orbitals involved in the above bonds and the formation of a strong Iodo bridge between the Hg atoms which requires the internal I—Hg—I angle to be considerably smaller. The stabilized resonance structure for the title ylide is destroyed by the complexes formation. On the other hand, the bond length of P(1)—C(19) in the similar ylide is 1.706 Å (Uson et al., 1985) which shows that the above bond is considerably elongated to 1.787 (6) Å in complex [{HgI2(FBPPY)}2]. The adaptation of dimeric structur in HgII ylide complex may be explained by both the preference of HgII to four coordination and the stability of the 18 electron configuration around HgII.

Related literature top

For related literature, see: Baenziger et al. (1978); Belluco et al. (1996); Bent (1961); Holy et al. (1976); Kalyanasundari et al. (1995, 1999); Karami (2007); Laavanya et al. (2001); Uson et al. (1985).

Experimental top

To a chloroform solution (15 ml) of triphenylphosphine (1 mmol) was added 2-bromo-4-fluoroacetophenone (1 mmol) and the resulting mixture was stirred for 12 h. The solution was filtered off, and the precipitate washed with diethyl-ether and air-dried. Further treatment with aqueous NaOH solution (0.5M) led to elimination of HBr, giving the free ligand precursors FBPPY. To a solution of FBPPY (0.100 g, 0.25 mmol) in acetone (5 ml) was added mercury (II) iodide (0.114 g, 0.25 mmol). The mixture was stirred for 12 h. On concentration by removing the solvent by vacuum, a pale yellow precipitate was obtained. The products were washed with benzene and dried in vacuo. Yield: 81%, M.p. 214 °C. Analysis calculated for C52H40F2Hg2I4O2P2:C 36.6, H 2.4%. Found: C 36.45, H 2.3%, 1H NMR: 4.62(d, 1H, CH, 2JPH= 5.5 Hz), 7.1–8 (m, 19H, Ph) p.p.m. and 31P NMR: 20.34 p.p.m. (Karami, 2007).

Refinement top

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and intermolecular hydrogen bonding interactions of the title compound.
Di-µ-iodido- bis{[(4-fluorobenzoylmethylene)triphenyl-λ5-phosphorane]iodidomercury(II)} top
Crystal data top
[Hg2I4(C26H20FOP)2]Z = 1
Mr = 1705.56F(000) = 788
Triclinic, P1Dx = 2.150 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0346 (16) ÅCell parameters from 47681 reflections
b = 11.8594 (19) Åθ = 1.7–28.3°
c = 13.235 (2) ŵ = 8.27 mm1
α = 92.513 (13)°T = 293 K
β = 111.293 (12)°Plate, colourless
γ = 113.117 (12)°0.26 × 0.17 × 0.08 mm
V = 1317.4 (4) Å3
Data collection top
Stoe IPDSII
diffractometer
5553 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4486 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.156
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 1.7°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.222, Tmax = 0.558l = 1616
16225 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7953P]
where P = (Fo2 + 2Fc2)/3
5553 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Hg2I4(C26H20FOP)2]γ = 113.117 (12)°
Mr = 1705.56V = 1317.4 (4) Å3
Triclinic, P1Z = 1
a = 10.0346 (16) ÅMo Kα radiation
b = 11.8594 (19) ŵ = 8.27 mm1
c = 13.235 (2) ÅT = 293 K
α = 92.513 (13)°0.26 × 0.17 × 0.08 mm
β = 111.293 (12)°
Data collection top
Stoe IPDSII
diffractometer
5553 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4486 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 0.558Rint = 0.156
16225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 1.00 e Å3
5553 reflectionsΔρmin = 0.67 e Å3
289 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.53557 (3)0.65438 (3)0.42856 (2)0.0581 (1)
I10.29177 (6)0.52860 (4)0.49338 (4)0.0650 (2)
I20.76379 (6)0.86528 (5)0.57953 (4)0.0727 (2)
P10.58806 (17)0.74049 (12)0.20232 (11)0.0389 (4)
F10.1102 (8)0.0461 (5)0.0631 (6)0.133 (3)
O10.2430 (5)0.6313 (4)0.1541 (4)0.0613 (16)
C10.7783 (7)0.7396 (5)0.2330 (5)0.0445 (17)
C20.8580 (8)0.7185 (7)0.3349 (5)0.062 (2)
C30.9949 (9)0.7038 (8)0.3566 (6)0.069 (3)
C41.0532 (9)0.7126 (8)0.2760 (7)0.074 (3)
C50.9746 (10)0.7344 (9)0.1756 (7)0.080 (3)
C60.8373 (9)0.7470 (7)0.1524 (7)0.065 (3)
C70.6204 (7)0.8894 (5)0.2717 (5)0.0442 (17)
C80.7676 (8)0.9929 (6)0.3076 (6)0.061 (2)
C90.7889 (11)1.1059 (6)0.3622 (7)0.076 (3)
C100.6674 (12)1.1146 (7)0.3787 (6)0.078 (3)
C110.5234 (11)1.0153 (7)0.3426 (7)0.072 (3)
C120.4974 (9)0.9025 (6)0.2876 (6)0.061 (2)
C130.4969 (7)0.7270 (5)0.0543 (5)0.0423 (17)
C140.5281 (8)0.8339 (6)0.0109 (5)0.0548 (19)
C150.4683 (10)0.8238 (7)0.1016 (6)0.068 (3)
C160.3754 (10)0.7082 (7)0.1731 (6)0.069 (2)
C170.3410 (9)0.6005 (6)0.1319 (5)0.061 (2)
C180.4023 (8)0.6097 (5)0.0176 (5)0.0527 (19)
C190.4769 (6)0.6070 (5)0.2440 (4)0.0401 (17)
C200.3012 (7)0.5596 (6)0.1835 (5)0.0463 (17)
C210.1984 (7)0.4217 (6)0.1586 (5)0.0539 (19)
C220.0358 (9)0.3826 (8)0.1146 (8)0.078 (3)
C230.0692 (11)0.2564 (10)0.0825 (10)0.107 (4)
C240.0083 (12)0.1715 (8)0.0951 (8)0.088 (3)
C250.1511 (11)0.2031 (7)0.1366 (7)0.081 (3)
C260.2542 (8)0.3310 (6)0.1691 (6)0.063 (2)
H20.818800.714200.389100.0740*
H31.047100.688200.424500.0830*
H41.146000.703800.289700.0890*
H51.015400.740600.122100.0960*
H60.784300.760500.083600.0780*
H80.850500.986900.295500.0730*
H90.887201.175800.387500.0900*
H100.683701.190500.415700.0940*
H110.441501.023100.354900.0860*
H120.397200.834800.261000.0730*
H140.590000.912800.058300.0650*
H150.490700.896100.130000.0820*
H160.335700.702600.249400.0820*
H170.277300.522100.180200.0730*
H180.380100.537400.010700.0630*
H190.505500.539400.230700.0480*
H220.003700.442300.106400.0940*
H230.178600.230400.053000.1290*
H250.188800.142400.142800.0970*
H260.363400.356100.198600.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0633 (2)0.0652 (2)0.0484 (1)0.0285 (1)0.0256 (1)0.0120 (1)
I10.0709 (3)0.0725 (3)0.0830 (3)0.0449 (2)0.0483 (3)0.0334 (2)
I20.0717 (3)0.0778 (3)0.0580 (3)0.0308 (2)0.0200 (2)0.0026 (2)
P10.0372 (7)0.0383 (7)0.0415 (7)0.0166 (6)0.0172 (6)0.0033 (5)
F10.110 (4)0.067 (3)0.161 (6)0.022 (3)0.062 (4)0.009 (3)
O10.049 (2)0.065 (3)0.074 (3)0.033 (2)0.021 (2)0.015 (2)
C10.043 (3)0.039 (3)0.045 (3)0.014 (2)0.017 (2)0.002 (2)
C20.050 (4)0.094 (5)0.036 (3)0.036 (3)0.010 (3)0.003 (3)
C30.054 (4)0.094 (5)0.049 (4)0.037 (4)0.009 (3)0.005 (3)
C40.050 (4)0.094 (5)0.079 (5)0.036 (4)0.025 (4)0.003 (4)
C50.077 (5)0.120 (7)0.084 (5)0.056 (5)0.059 (5)0.041 (5)
C60.066 (4)0.083 (5)0.070 (4)0.040 (4)0.043 (4)0.030 (3)
C70.048 (3)0.046 (3)0.044 (3)0.027 (3)0.018 (2)0.008 (2)
C80.057 (4)0.056 (4)0.055 (4)0.024 (3)0.010 (3)0.007 (3)
C90.078 (5)0.045 (4)0.081 (5)0.019 (3)0.020 (4)0.006 (3)
C100.110 (7)0.061 (4)0.067 (4)0.059 (5)0.019 (4)0.001 (3)
C110.089 (6)0.071 (5)0.074 (5)0.051 (4)0.036 (4)0.007 (4)
C120.068 (4)0.058 (4)0.070 (4)0.036 (3)0.033 (4)0.011 (3)
C130.041 (3)0.043 (3)0.046 (3)0.021 (2)0.019 (2)0.005 (2)
C140.057 (4)0.048 (3)0.049 (3)0.018 (3)0.017 (3)0.007 (2)
C150.088 (5)0.059 (4)0.059 (4)0.031 (4)0.033 (4)0.022 (3)
C160.090 (5)0.074 (4)0.042 (3)0.044 (4)0.019 (3)0.009 (3)
C170.073 (4)0.058 (4)0.045 (3)0.031 (3)0.015 (3)0.002 (3)
C180.060 (4)0.038 (3)0.055 (3)0.020 (3)0.021 (3)0.002 (2)
C190.040 (3)0.043 (3)0.041 (3)0.019 (2)0.020 (2)0.008 (2)
C200.041 (3)0.056 (3)0.042 (3)0.022 (3)0.017 (2)0.007 (2)
C210.045 (3)0.059 (4)0.048 (3)0.011 (3)0.023 (3)0.003 (3)
C220.048 (4)0.074 (5)0.105 (6)0.017 (4)0.036 (4)0.002 (4)
C230.052 (5)0.098 (7)0.136 (9)0.001 (5)0.043 (5)0.018 (6)
C240.088 (6)0.061 (5)0.082 (5)0.008 (5)0.046 (5)0.001 (4)
C250.087 (6)0.052 (4)0.077 (5)0.012 (4)0.025 (4)0.012 (3)
C260.052 (4)0.054 (4)0.059 (4)0.010 (3)0.014 (3)0.007 (3)
Geometric parameters (Å, º) top
Hg1—I12.7780 (8)C19—C201.491 (10)
Hg1—I22.6895 (7)C20—C211.493 (9)
Hg1—C192.281 (5)C21—C221.382 (13)
Hg1—I1i3.2599 (8)C21—C261.385 (11)
P1—C11.806 (8)C22—C231.383 (15)
P1—C71.805 (6)C23—C241.356 (17)
P1—C131.805 (6)C24—C251.369 (17)
P1—C191.787 (6)C25—C261.394 (11)
F1—C241.369 (11)C2—H20.9300
O1—C201.212 (9)C3—H30.9300
C1—C21.387 (9)C4—H40.9300
C1—C61.387 (12)C5—H50.9300
C2—C31.381 (13)C6—H60.9300
C3—C41.381 (13)C8—H80.9300
C4—C51.373 (12)C9—H90.9300
C5—C61.369 (15)C10—H100.9300
C7—C81.389 (10)C11—H110.9300
C7—C121.389 (13)C12—H120.9300
C8—C91.394 (11)C14—H140.9300
C9—C101.355 (17)C15—H150.9300
C10—C111.348 (14)C16—H160.9300
C11—C121.375 (11)C17—H170.9300
C13—C141.385 (9)C18—H180.9300
C13—C181.390 (8)C19—H190.9800
C14—C151.368 (9)C22—H220.9300
C15—C161.373 (11)C23—H230.9300
C16—C171.378 (10)C25—H250.9300
C17—C181.391 (9)C26—H260.9300
Hg1···C23.694 (9)C15···H23x3.0300
Hg1···C123.624 (7)C19···H22.9400
Hg1···C264.216 (7)C19···H182.8500
Hg1···H22.8900C19···H262.6800
Hg1···H123.4500C20···H123.0300
Hg1···H263.9000C20···H182.7100
I2···C25i3.739 (8)C23···H5ix2.9500
I2···C73.863 (6)C24···H5ix3.0900
I1···H2i3.3300C26···H192.5600
I1···H10ii3.3800H2···Hg12.8900
I2···H23.3600H2···I23.3600
I2···H8iii3.2500H2···C192.9400
I2···H11ii3.1800H2···I1i3.3300
F1···C14iv3.292 (11)H3···C9iii3.0800
F1···H14iv2.7700H3···C10iii3.0400
O1···C4v3.271 (11)H3···H10iii2.5200
O1···C123.124 (8)H4···O1vi2.5900
O1···C133.135 (9)H4···H12vi2.5700
O1···C183.270 (9)H5···C23ix2.9500
O1···H4v2.5900H5···C24ix3.0900
O1···H122.3200H6···C132.6300
O1···H222.4400H6···C142.8900
C2···Hg13.694 (9)H8···C12.7400
C4···O1vi3.271 (11)H8···I2iii3.2500
C6···C143.558 (12)H10···I1ii3.3800
C7···I23.863 (6)H10···H3iii2.5200
C10···C16vii3.517 (11)H10···H16vii2.5700
C12···O13.124 (8)H11···I2ii3.1800
C12···Hg13.624 (7)H12···Hg13.4500
C13···O13.135 (9)H12···O12.3200
C14···C63.558 (12)H12···C203.0300
C14···F1viii3.292 (11)H12···H4v2.5700
C16···C10vii3.517 (11)H14···F1viii2.7700
C18···C203.177 (10)H14···C72.7700
C18···O13.270 (9)H14···C83.0200
C20···C183.177 (10)H15···C10vii3.0600
C25···I2i3.739 (8)H15···C11vii3.0200
C26···Hg14.216 (7)H16···C10vii2.8200
C1···H17ix2.9300H16···H10vii2.5700
C1···H82.7400H17···C1ix2.9300
C2···H193.0400H17···C2ix2.9300
C2···H17ix2.9300H17···C3ix3.0300
C3···H17ix3.0300H17···C6ix3.0300
C6···H17ix3.0300H18···C192.8500
C7···H142.7700H18···C202.7100
C8···H143.0200H19···C23.0400
C9···H3iii3.0800H19···C262.5600
C10···H15vii3.0600H19···H262.0000
C10···H16vii2.8200H22···O12.4400
C10···H3iii3.0400H23···C14x3.0500
C11···H15vii3.0200H23···C15x3.0300
C13···H62.6300H26···Hg13.9000
C14···H23x3.0500H26···C192.6800
C14···H62.8900H26···H192.0000
I1—Hg1—I2111.82 (2)C22—C23—C24118.2 (11)
I1—Hg1—C19116.49 (16)F1—C24—C23119.1 (11)
I1—Hg1—I1i94.17 (2)F1—C24—C25116.9 (9)
I2—Hg1—C19127.98 (15)C23—C24—C25124.0 (9)
I1i—Hg1—I297.77 (2)C24—C25—C26116.6 (9)
I1i—Hg1—C1996.90 (16)C21—C26—C25121.8 (8)
Hg1—I1—Hg1i85.84 (2)C1—C2—H2120.00
C1—P1—C7109.1 (3)C3—C2—H2120.00
C1—P1—C13106.6 (3)C2—C3—H3121.00
C1—P1—C19106.1 (3)C4—C3—H3120.00
C7—P1—C13108.4 (3)C3—C4—H4120.00
C7—P1—C19114.7 (3)C5—C4—H4120.00
C13—P1—C19111.6 (3)C4—C5—H5119.00
P1—C1—C2119.1 (6)C6—C5—H5119.00
P1—C1—C6120.8 (6)C1—C6—H6120.00
C2—C1—C6119.7 (8)C5—C6—H6121.00
C1—C2—C3120.7 (7)C7—C8—H8121.00
C2—C3—C4119.0 (7)C9—C8—H8121.00
C3—C4—C5120.1 (10)C8—C9—H9120.00
C4—C5—C6121.4 (9)C10—C9—H9120.00
C1—C6—C5119.1 (8)C9—C10—H10119.00
P1—C7—C8120.4 (6)C11—C10—H10119.00
P1—C7—C12120.4 (5)C10—C11—H11120.00
C8—C7—C12119.2 (6)C12—C11—H11120.00
C7—C8—C9118.8 (8)C7—C12—H12120.00
C8—C9—C10120.4 (8)C11—C12—H12120.00
C9—C10—C11121.3 (8)C13—C14—H14120.00
C10—C11—C12120.1 (11)C15—C14—H14120.00
C7—C12—C11120.2 (8)C14—C15—H15120.00
P1—C13—C14120.0 (5)C16—C15—H15120.00
P1—C13—C18120.6 (4)C15—C16—H16120.00
C14—C13—C18119.3 (6)C17—C16—H16120.00
C13—C14—C15120.2 (6)C16—C17—H17120.00
C14—C15—C16120.8 (7)C18—C17—H17120.00
C15—C16—C17120.1 (7)C13—C18—H18120.00
C16—C17—C18119.6 (6)C17—C18—H18120.00
C13—C18—C17120.0 (5)Hg1—C19—H19109.00
Hg1—C19—P1110.7 (3)P1—C19—H19109.00
Hg1—C19—C20106.7 (4)C20—C19—H19109.00
P1—C19—C20113.5 (4)C21—C22—H22119.00
O1—C20—C19120.8 (6)C23—C22—H22119.00
O1—C20—C21120.6 (7)C22—C23—H23121.00
C19—C20—C21118.6 (6)C24—C23—H23121.00
C20—C21—C22117.0 (7)C24—C25—H25122.00
C20—C21—C26124.6 (7)C26—C25—H25122.00
C22—C21—C26118.3 (7)C21—C26—H26119.00
C21—C22—C23121.2 (9)C25—C26—H26119.00
I2—Hg1—I1—Hg1i100.09 (2)P1—C1—C2—C3173.0 (6)
C19—Hg1—I1—Hg1i99.83 (17)C1—C2—C3—C41.1 (12)
I1i—Hg1—I1—Hg1i0.00 (4)C2—C3—C4—C50.7 (13)
I1i—Hg1i—I1—Hg10.00 (5)C3—C4—C5—C60.5 (14)
I2i—Hg1i—I1—Hg1112.71 (2)C4—C5—C6—C11.1 (13)
C19i—Hg1i—I1—Hg1117.34 (16)C8—C7—C12—C112.8 (10)
I2—Hg1—C19—C20131.8 (3)P1—C7—C8—C9179.1 (6)
I1i—Hg1—C19—C20122.7 (4)P1—C7—C12—C11178.6 (6)
I2—Hg1—C19—P17.9 (4)C12—C7—C8—C92.3 (10)
I1i—Hg1—C19—P1113.4 (3)C7—C8—C9—C100.7 (11)
I1—Hg1—C19—P1148.4 (2)C8—C9—C10—C110.4 (12)
I1—Hg1—C19—C2024.6 (4)C9—C10—C11—C120.2 (12)
C19—P1—C1—C245.5 (6)C10—C11—C12—C71.8 (12)
C7—P1—C1—C6108.0 (6)P1—C13—C14—C15175.4 (7)
C7—P1—C1—C278.5 (6)C18—C13—C14—C151.0 (13)
C13—P1—C1—C2164.6 (5)P1—C13—C18—C17175.9 (7)
C1—P1—C7—C12162.1 (5)C14—C13—C18—C170.5 (13)
C13—P1—C1—C68.8 (6)C13—C14—C15—C160.7 (15)
C19—P1—C1—C6127.9 (5)C14—C15—C16—C170.1 (16)
C7—P1—C19—C2084.7 (5)C15—C16—C17—C180.7 (16)
C13—P1—C19—C2039.2 (5)C16—C17—C18—C130.3 (14)
C7—P1—C13—C1429.7 (8)Hg1—C19—C20—O189.0 (6)
C19—P1—C13—C14157.0 (6)Hg1—C19—C20—C2191.8 (6)
C1—P1—C13—C1888.8 (7)P1—C19—C20—O133.2 (8)
C13—P1—C7—C1282.2 (6)P1—C19—C20—C21146.1 (5)
C19—P1—C7—C1243.3 (6)O1—C20—C21—C228.3 (10)
C1—P1—C19—C20154.9 (4)O1—C20—C21—C26166.9 (7)
C1—P1—C13—C1487.6 (7)C19—C20—C21—C22172.4 (7)
C7—P1—C13—C18154.0 (7)C19—C20—C21—C2612.4 (10)
C19—P1—C13—C1826.7 (8)C20—C21—C22—C23176.0 (9)
C1—P1—C7—C819.3 (6)C26—C21—C22—C230.5 (13)
C13—P1—C19—Hg1159.0 (3)C20—C21—C26—C25175.1 (7)
C13—P1—C7—C896.3 (6)C22—C21—C26—C250.0 (11)
C7—P1—C19—Hg135.2 (4)C21—C22—C23—C240.2 (16)
C1—P1—C19—Hg185.3 (3)C22—C23—C24—F1179.5 (9)
C19—P1—C7—C8138.1 (5)C22—C23—C24—C250.8 (17)
C2—C1—C6—C50.6 (11)F1—C24—C25—C26180.0 (8)
P1—C1—C6—C5174.0 (6)C23—C24—C25—C261.3 (15)
C6—C1—C2—C30.5 (11)C24—C25—C26—C210.9 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x1, y1, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1, y+2, z; (viii) x+1, y+1, z; (ix) x+1, y+1, z; (x) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1vi0.932.593.271 (11)131
C12—H12···O10.932.323.124 (8)144
C22—H22···O10.932.442.749 (10)100
Symmetry code: (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Hg2I4(C26H20FOP)2]
Mr1705.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0346 (16), 11.8594 (19), 13.235 (2)
α, β, γ (°)92.513 (13), 111.293 (12), 113.117 (12)
V3)1317.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)8.27
Crystal size (mm)0.26 × 0.17 × 0.08
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.222, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
16225, 5553, 4486
Rint0.156
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.089, 1.05
No. of reflections5553
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.67

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—I12.7780 (8)Hg1—C192.281 (5)
Hg1—I22.6895 (7)Hg1—I1i3.2599 (8)
I1—Hg1—I2111.82 (2)I1i—Hg1—I297.77 (2)
I1—Hg1—C19116.49 (16)I1i—Hg1—C1996.90 (16)
I1—Hg1—I1i94.17 (2)Hg1—I1—Hg1i85.84 (2)
I2—Hg1—C19127.98 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1ii0.932.593.271 (11)131
C12—H12···O10.932.323.124 (8)144
C22—H22···O10.932.442.749 (10)100
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F. 279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaenziger, N. C., Flynn, R. M., Swenson, D. C. & Holy, N. L. (1978). Acta Cryst. B34, 2300-2301.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBelluco, U., Michelin, R. A., Bertini, R., Facchin, G., Pace, G., Zanotto, L., Mozzon, M., Furlan, M. & Zangrando, E. (1996). Inorg. Chim. Acta, 252, 355–366.  CSD CrossRef CAS Web of Science Google Scholar
First citationBent, H. A. (1961). Chem. Rev. 61, 275–311.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoly, N. L., Baenziger, N. C., Flynn, R. M. & Swenson, D. C. (1976). J. Am. Chem. Soc. 98, 7823–7824.  CrossRef CAS Web of Science Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33–36.  CSD CrossRef CAS Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103–109.  CSD CrossRef CAS Web of Science Google Scholar
First citationKarami, K. (2007). J. Chem. Res. (S), pp. 725–727.  Web of Science CrossRef Google Scholar
First citationLaavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660–1661.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUson, R., Fornies, J., Navarro, R., Espinet, P. & Mendivil, C. (1985). J. Organomet. Chem. 290, 125–131.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m612-m613
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds