metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-disulfur dinitrido)bis­­[di­phenyl­tin(IV)]

aDepartment of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 1 April 2008; accepted 2 April 2008; online 10 April 2008)

The title compound, [Sn2(C6H5)4(N2S2)2], exists as a centrosymmetric binuclear dimer with the SnIV centres in distorted trigonal bipyramidal geometry and a central Sn2N2 core.

Related literature

For related literature, see: Aucott et al. (2002[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481-1487.], 2003[Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.]); Bates et al. (1986[Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.]); Chivers et al. (1986[Chivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116, 145-151.]); Jones et al. (1985a[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.],b[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947-1950.], 1986[Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711-713.], 1987[Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907-914.], 1988[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.]); Kelly & Woollins (1986[Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607-632.]); Read et al. (2007[Read, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751-m752.]); Slawin & Woollins (2006[Slawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658-m1659.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C6H5)4(N2S2)2]

  • Mr = 730.06

  • Triclinic, [P \overline 1]

  • a = 8.9235 (6) Å

  • b = 9.2285 (9) Å

  • c = 9.5881 (8) Å

  • α = 63.809 (2)°

  • β = 67.309 (2)°

  • γ = 70.471 (2)°

  • V = 640.72 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 93 (2) K

  • 0.20 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.923, Tmax = 0.941

  • 4110 measured reflections

  • 2267 independent reflections

  • 2110 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.14

  • 2267 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—N1 2.137 (4)
Sn1—N1i 2.296 (3)
Sn1—S2 2.5967 (12)
N1—Sn1—N1i 72.82 (15)
N1—Sn1—S2 80.65 (9)
S1—N1—Sn1 121.6 (2)
Sn1—N1—Sn1i 107.18 (15)
N2—S2—Sn1 101.63 (14)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The disulfurdinitride dianion is unknown in simple salts but can be isolated in metal complexes (Kelly and Woollins 1986, Jones et al. 1985a,b; Bates et al. 1986, Read et al. 2007) which may be protonated at the metal coordinated nitrogen (Jones et al. 1986, 1988) and we have previously commented on the structural consequences of this protonation (Jones et al. 1987). Recently, we developed a new route to disulfurdinitrido complexes from Bu2SnS2N2 (Aucott et al. 2002) and examined the metallation of the IrS2N2 and CoS2N2 rings using the AuPR3 cation as a species which is isolobal with a proton (Aucott et al. 2003, Slawin and Woollins 2006).

The structure of the title compound contains tin centres in distorted trigonal bipyramidal geometry and a central Sn2N2 ring (Figure 1). The binuclaear dimer is disposed about a centre of symmetry. The central core (excluding the phenyl rings) is planar with a mean deviation of 0.01 Å and a maximum deviation of 0.025 Å for N(1). The geometry is very similar to that of [n-Bu2SnS2N2]2 (Aucott et al. 2002). Comparison of the S—N bond lengths with platinum phosphine substituted complexes containing the S2N2 group reveals that the S—N bond lengths have a different motif to the PMe2Ph complex (Jones et al 1988) and one of the published PPh3 complexes (Chivers et al. 1986), but are comparable with most others systems containing the disulfurdinitrido anion (Jones et al. 1985a, Bates et al 1986).

Related literature top

For related literature, see: Aucott et al. (2002, 2003); Bates et al. (1986); Chivers et al. (1986); Jones et al. (1985a,b, 1986, 1987, 1988); Kelly & Woollins (1986); Read et al. (2007); Slawin & Woollins (2006).

Experimental top

Ammonia gas (400 ml) was condensed into a dry-ice/acetone cooled Schlenk flask.[S4N3]Cl (18.47 g, 0.019 moles) was then added, forming a dark red solution. After stirring for 30 minutes, Ph2SnCl2 (1.68 g, 4.88 mmoles) was added, and the mixture stirred at 195 K for 4 h, before removal of the lower cooling bath, allowing NH3(l) reflux, and eventually evaporation overnight. The solid products were transferred to a Sohxlet apparatus, containing dry, degassed petroleum ether (140 ml) and cycled for 4 h, by which point the extracts appeared almost colourless. The lower flask was then placed under N2(g) at 250 K for 12 h, yielding bright yellow-orange crystals of Ph2SnS2N2, collected by filtration under N2. Yield: 0.092 g, 5.15%. IR Spectrum (KBr Pellet, cm-1): 3063 (m), 2963 (m), 1428 (versus), 1070 (s), 1024 (s), 899 (s), 729 (s), 694 (s), 636(s), 440 (s) and 382 (s), 1H NMR: δH 7.56–7.53 (4H, m, Ph) and 7.40–7.37 (6H, m, Ph), Mass Spectrum: EI m/z (%): 366.05 (Ph2SnS2N2, 5), 288.99 (PhSnS2N2, 2), 257.01 (PhSnSN2, 2), 197.01 (PhSn, 68), 77.06 (Ph, 25) and 63.96 (S2, 8), Melting Point: 411–13 K.

Refinement top

All H atoms were included in calculated positions (C—H distance 0.95Å) and were refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, and aryl H atoms). The highest peak in the difference map is 0.95 Å from atom S(2) and the deepest hole is 0.96 Å from Sn(1)

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry operator for generating equivalent atoms: (A) 1-x, 1-y, 1-z.
Bis(µ-disulfur dinitrido)bis[diphenyltin(IV)] top
Crystal data top
[Sn2(C6H5)4(N2S2)2]Z = 1
Mr = 730.06F(000) = 356
Triclinic, P1Dx = 1.892 Mg m3
a = 8.9235 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2285 (9) ÅCell parameters from 2584 reflections
c = 9.5881 (8) Åθ = 2.5–28.3°
α = 63.809 (2)°µ = 2.30 mm1
β = 67.309 (2)°T = 93 K
γ = 70.471 (2)°Prism, yellow
V = 640.72 (9) Å30.20 × 0.03 × 0.03 mm
Data collection top
Rigaku Mercury
diffractometer
2267 independent reflections
Radiation source: rotating anode2110 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
Detector resolution: 0.83 pixels mm-1θmax = 25.1°, θmin = 2.5°
ω and ϕ scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku 2004)
k = 711
Tmin = 0.923, Tmax = 0.941l = 811
4110 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
2267 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Sn2(C6H5)4(N2S2)2]γ = 70.471 (2)°
Mr = 730.06V = 640.72 (9) Å3
Triclinic, P1Z = 1
a = 8.9235 (6) ÅMo Kα radiation
b = 9.2285 (9) ŵ = 2.30 mm1
c = 9.5881 (8) ÅT = 93 K
α = 63.809 (2)°0.20 × 0.03 × 0.03 mm
β = 67.309 (2)°
Data collection top
Rigaku Mercury
diffractometer
2267 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku 2004)
2110 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.941Rint = 0.046
4110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.14Δρmax = 0.85 e Å3
2267 reflectionsΔρmin = 1.19 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.42885 (3)0.54581 (3)0.68014 (3)0.01479 (16)
N10.6474 (5)0.4511 (4)0.5243 (4)0.0163 (8)
S10.81765 (14)0.40140 (14)0.55466 (14)0.0202 (3)
N20.8196 (5)0.4231 (5)0.7071 (5)0.0229 (9)
S20.64354 (15)0.49589 (15)0.82590 (15)0.0237 (3)
C10.3401 (5)0.8035 (5)0.6353 (5)0.0158 (9)
C20.2544 (6)0.9079 (5)0.5220 (6)0.0238 (11)
H2A0.23610.86580.45690.029*
C30.1945 (6)1.0741 (6)0.5022 (7)0.0288 (12)
H3A0.13521.14410.42460.035*
C40.2214 (6)1.1370 (6)0.5952 (7)0.0274 (12)
H4A0.18201.25030.58110.033*
C50.3050 (7)1.0347 (6)0.7075 (7)0.0301 (13)
H5A0.32271.07750.77250.036*
C60.3644 (6)0.8701 (6)0.7283 (6)0.0251 (11)
H6A0.42260.80130.80710.030*
C70.2886 (6)0.3648 (5)0.8626 (6)0.0176 (10)
C80.3637 (6)0.2265 (6)0.9698 (6)0.0234 (11)
H8A0.47600.21480.96280.028*
C90.2755 (7)0.1059 (6)1.0865 (6)0.0351 (13)
H9A0.32650.01301.16120.042*
C100.1130 (7)0.1206 (7)1.0945 (7)0.0346 (13)
H10A0.05400.03591.17250.042*
C110.0361 (7)0.2576 (7)0.9900 (7)0.0360 (14)
H11A0.07650.26970.99760.043*
C120.1259 (6)0.3773 (6)0.8739 (6)0.0241 (11)
H12A0.07420.47050.80000.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0162 (2)0.0132 (2)0.0155 (2)0.00201 (15)0.00536 (16)0.00553 (16)
N10.0150 (19)0.0190 (19)0.018 (2)0.0018 (15)0.0066 (16)0.0089 (16)
S10.0152 (6)0.0246 (6)0.0244 (7)0.0011 (5)0.0084 (5)0.0115 (5)
N20.022 (2)0.026 (2)0.024 (2)0.0046 (17)0.0108 (18)0.0087 (18)
S20.0237 (7)0.0309 (7)0.0229 (7)0.0028 (5)0.0107 (5)0.0135 (6)
C10.015 (2)0.014 (2)0.017 (2)0.0048 (17)0.0007 (19)0.0066 (18)
C20.032 (3)0.020 (2)0.020 (3)0.005 (2)0.008 (2)0.008 (2)
C30.029 (3)0.021 (3)0.034 (3)0.002 (2)0.014 (2)0.008 (2)
C40.030 (3)0.014 (2)0.035 (3)0.005 (2)0.007 (2)0.007 (2)
C50.034 (3)0.030 (3)0.038 (3)0.005 (2)0.012 (3)0.021 (3)
C60.026 (3)0.022 (3)0.028 (3)0.001 (2)0.009 (2)0.011 (2)
C70.022 (3)0.015 (2)0.017 (2)0.0024 (18)0.0050 (19)0.0074 (19)
C80.024 (3)0.023 (3)0.021 (3)0.005 (2)0.007 (2)0.005 (2)
C90.049 (4)0.025 (3)0.020 (3)0.009 (2)0.010 (3)0.003 (2)
C100.038 (3)0.037 (3)0.025 (3)0.018 (3)0.006 (3)0.002 (2)
C110.032 (3)0.046 (3)0.023 (3)0.018 (3)0.002 (2)0.007 (3)
C120.025 (3)0.023 (2)0.018 (3)0.002 (2)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
Sn1—C72.132 (5)C4—H4A0.9500
Sn1—N12.137 (4)C5—C61.380 (7)
Sn1—C12.138 (4)C5—H5A0.9500
Sn1—N1i2.296 (3)C6—H6A0.9500
Sn1—S22.5967 (12)C7—C121.382 (7)
N1—S11.536 (4)C7—C81.392 (6)
N1—Sn1i2.296 (3)C8—C91.385 (7)
S1—N21.567 (4)C8—H8A0.9500
N2—S21.675 (4)C9—C101.385 (8)
C1—C21.385 (6)C9—H9A0.9500
C1—C61.394 (6)C10—C111.381 (8)
C2—C31.396 (6)C10—H10A0.9500
C2—H2A0.9500C11—C121.385 (7)
C3—C41.379 (7)C11—H11A0.9500
C3—H3A0.9500C12—H12A0.9500
C4—C51.364 (8)
C7—Sn1—N1114.01 (15)C5—C4—H4A120.3
C7—Sn1—C1122.65 (16)C3—C4—H4A120.3
N1—Sn1—C1122.73 (15)C4—C5—C6121.0 (5)
C7—Sn1—N1i93.55 (15)C4—C5—H5A119.5
N1—Sn1—N1i72.82 (15)C6—C5—H5A119.5
C1—Sn1—N1i95.25 (15)C5—C6—C1120.9 (5)
C7—Sn1—S298.61 (12)C5—C6—H6A119.6
N1—Sn1—S280.65 (9)C1—C6—H6A119.6
C1—Sn1—S297.87 (12)C12—C7—C8118.6 (4)
N1i—Sn1—S2153.42 (10)C12—C7—Sn1121.8 (3)
S1—N1—Sn1121.6 (2)C8—C7—Sn1119.5 (3)
S1—N1—Sn1i131.2 (2)C9—C8—C7120.3 (5)
Sn1—N1—Sn1i107.18 (15)C9—C8—H8A119.9
N1—S1—N2115.8 (2)C7—C8—H8A119.9
S1—N2—S2120.4 (2)C8—C9—C10120.0 (5)
N2—S2—Sn1101.63 (14)C8—C9—H9A120.0
C2—C1—C6117.8 (4)C10—C9—H9A120.0
C2—C1—Sn1123.6 (3)C11—C10—C9120.5 (5)
C6—C1—Sn1118.6 (3)C11—C10—H10A119.8
C1—C2—C3120.9 (4)C9—C10—H10A119.8
C1—C2—H2A119.6C10—C11—C12118.8 (5)
C3—C2—H2A119.6C10—C11—H11A120.6
C4—C3—C2120.1 (5)C12—C11—H11A120.6
C4—C3—H3A120.0C7—C12—C11121.8 (4)
C2—C3—H3A120.0C7—C12—H12A119.1
C5—C4—C3119.4 (5)C11—C12—H12A119.1
C7—Sn1—N1—S196.1 (3)C6—C1—C2—C30.1 (7)
C1—Sn1—N1—S192.6 (3)Sn1—C1—C2—C3177.8 (4)
N1i—Sn1—N1—S1177.8 (3)C1—C2—C3—C40.5 (8)
S2—Sn1—N1—S10.7 (2)C2—C3—C4—C50.8 (8)
C7—Sn1—N1—Sn1i86.17 (18)C3—C4—C5—C60.6 (8)
C1—Sn1—N1—Sn1i85.12 (19)C4—C5—C6—C10.2 (8)
N1i—Sn1—N1—Sn1i0.001 (2)C2—C1—C6—C50.1 (7)
S2—Sn1—N1—Sn1i178.51 (14)Sn1—C1—C6—C5178.0 (4)
Sn1—N1—S1—N20.6 (3)N1—Sn1—C7—C12120.4 (4)
Sn1i—N1—S1—N2177.8 (2)C1—Sn1—C7—C1250.9 (4)
N1—S1—N2—S20.2 (4)N1i—Sn1—C7—C1247.6 (4)
S1—N2—S2—Sn10.6 (3)S2—Sn1—C7—C12156.1 (3)
C7—Sn1—S2—N2113.77 (18)N1—Sn1—C7—C857.0 (4)
N1—Sn1—S2—N20.68 (16)C1—Sn1—C7—C8131.7 (4)
C1—Sn1—S2—N2121.35 (18)N1i—Sn1—C7—C8129.7 (4)
N1i—Sn1—S2—N22.5 (3)S2—Sn1—C7—C826.6 (4)
C7—Sn1—C1—C292.6 (4)C12—C7—C8—C91.0 (7)
N1—Sn1—C1—C277.9 (4)Sn1—C7—C8—C9178.5 (4)
N1i—Sn1—C1—C25.0 (4)C7—C8—C9—C101.6 (8)
S2—Sn1—C1—C2161.8 (4)C8—C9—C10—C112.1 (9)
C7—Sn1—C1—C685.2 (4)C9—C10—C11—C122.0 (9)
N1—Sn1—C1—C6104.3 (4)C8—C7—C12—C111.0 (7)
N1i—Sn1—C1—C6177.2 (4)Sn1—C7—C12—C11178.4 (4)
S2—Sn1—C1—C620.4 (4)C10—C11—C12—C71.5 (8)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn2(C6H5)4(N2S2)2]
Mr730.06
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.9235 (6), 9.2285 (9), 9.5881 (8)
α, β, γ (°)63.809 (2), 67.309 (2), 70.471 (2)
V3)640.72 (9)
Z1
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.20 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku 2004)
Tmin, Tmax0.923, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
4110, 2267, 2110
Rint0.046
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.14
No. of reflections2267
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.19

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—N12.137 (4)N1—S11.536 (4)
Sn1—N1i2.296 (3)S1—N21.567 (4)
Sn1—S22.5967 (12)N2—S21.675 (4)
N1—Sn1—N1i72.82 (15)N1—S1—N2115.8 (2)
N1—Sn1—S280.65 (9)S1—N2—S2120.4 (2)
S1—N1—Sn1121.6 (2)N2—S2—Sn1101.63 (14)
Sn1—N1—Sn1i107.18 (15)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466–1469.  CSD CrossRef CAS Google Scholar
First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481–1487.  CSD CrossRef CAS Google Scholar
First citationBates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367–2370.  CSD CrossRef Google Scholar
First citationChivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116, 145–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationJones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711–713.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325–1326.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947–1950.  CSD CrossRef CAS Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803–807.  CSD CrossRef Google Scholar
First citationJones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907–914.  CSD CrossRef Google Scholar
First citationKelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607–632.  CrossRef CAS Google Scholar
First citationRead, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658–m1659.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds