organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­chloro-2-(2-fluoro­phen­yl)iso­indoline-1,3-dione

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 4 April 2008; accepted 16 April 2008; online 23 April 2008)

The crystal structure of the title compound, C14H6Cl2FNO2, exhibits C—H⋯π and ππ inter­actions, which generate C(3) chains in the [100] direction. The ππ inter­action occurs between the aromatic rings of isoindoline units, with a centroid–centroid distance of 3.672 Å and an inter­planar separation of 3.528 Å. The isoindoline unit is planar and inclined at an angle of 58.63 (18)° to the substituent benzene ring. The F atom is disordered over two positions, with refined occupancies of 0.669 (3) and 0.331 (3).

Related literature

For general background, see: Hall et al. (1987[Hall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res. 4, 472-479.]); Abdel-Hafez (2004[Abdel-Hafez, A. A. M. (2004). Arch. Pharm. Res. 27, 495-501.]); Sena et al. (2007[Sena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc. 18, 1224-1234.]). For related literature, see: Loudon (2002[Loudon, M. G. (2002). Organic Chemistry, 4th ed., pp. 837, 874-880. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H6Cl2FNO2

  • Mr = 310.11

  • Orthorhombic, P b c a

  • a = 8.0078 (3) Å

  • b = 27.3570 (9) Å

  • c = 11.5563 (5) Å

  • V = 2531.63 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.76 × 0.50 × 0.20 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.703, Tmax = 0.907

  • 31181 measured reflections

  • 2384 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.03

  • 2384 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.93 2.99 3.844 (4) 153
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]. Cg1 is the centroid of atoms C2–C7.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phthalimide derivatives have various biological activities (Hall et al., 1987; 1987; Abdel-Hafez, 2004; Sena et al. 2007). In view of the importance of the N-arylphthalimides, we herein report the results of title compound 5,6-dichloro-2-(2-fluorophenyl)isoindoline-1,3-dione, (I).

The molecule of (I) is built up from a 5,6-dichlorophthalimide unit connected to a o-fluorophenyl group through an nitrogen atom (Fig. 1). The isoindoline ring (atoms N1/C1–C8) is almost planar the largest deviation from the mean plane being 0.027 (2) Å for atom C1. The dihedral angle between the fluorophenyl ring and the mean plane of the isoindoline part is 58.63 (18)°. In (I), the crystal packing is stabilized by C6—H6···π (Table 1) interactions. The C1—N1 and C8—N1 bonds are 1.406 (2) and 1.394 (2)Å, respectively. These C—N bond lengths are shorter than C—N single bond (C—N = 1.47 Å; Loudon, 2002). This reflects both the sp2 hybridization of the adjacent carbon and the overlap of unshared electrons on nitrogen with π-electron system of carbonyl groups (Fig. 3). The ππ interaction occurs between the aromatic rings (C2–C7) of isoindoline moieties at (x; y; z) and (1 - x; 1 - y; 1 - z) sites with the centroid-centroid distance of 3.672 Å and an interplanar separation of 3.528 Å.

Related literature top

For general background, see: Hall et al. (1987); Abdel-Hafez (2004); Sena et al. (2007). For related literature, see: Loudon (2002).

Experimental top

A mixture of 4,5-dichlorophthalic acid (1.175 g, 0.005 mol) and 2-fluoroaniline (0.56 g, 0.005 mol) in DMF (1.5 ml) was heated at boiling temperature 15 min. The reaction mixture added in 50 ml e thanol (95%) and crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of this mixture at room temperature (yield 80%).

Refinement top

The F atom is disordered over two ortho positions with refined occupancies of 0.669 (3) and 0.331 (3). H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the higher occupied of the disordered sites is shown.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of C(3) chain and ππ interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) 1 - x,1 - y,1 - z; (ii) 1/2 + x, y, 3/2 - z; (iii) x - 1/2, y, 3/2 - z].
[Figure 3] Fig. 3. The sp2 hybridization of the adjacent carbon and the overlap of unshared electrons on nitrogen with π-electron system of carbonyl groups.
5,6-Dichloro-2-(2-fluorophenyl)isoindoline-1,3-dione top
Crystal data top
C14H6Cl2FNO2F(000) = 1248
Mr = 310.11Dx = 1.622 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31181 reflections
a = 8.0078 (3) Åθ = 1.5–26.2°
b = 27.3570 (9) ŵ = 0.52 mm1
c = 11.5563 (5) ÅT = 296 K
V = 2531.63 (17) Å3Prism, colorless
Z = 80.76 × 0.50 × 0.20 mm
Data collection top
Stoe IPDSII
diffractometer
2384 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1956 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 1.5°
ω scan rotation methodh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3333
Tmin = 0.703, Tmax = 0.907l = 1414
31181 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3058P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2384 reflectionsΔρmax = 0.15 e Å3
192 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (9)
Crystal data top
C14H6Cl2FNO2V = 2531.63 (17) Å3
Mr = 310.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.0078 (3) ŵ = 0.52 mm1
b = 27.3570 (9) ÅT = 296 K
c = 11.5563 (5) Å0.76 × 0.50 × 0.20 mm
Data collection top
Stoe IPDSII
diffractometer
2384 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1956 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.907Rint = 0.063
31181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2384 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.28581 (19)0.61572 (6)0.53527 (14)0.0525 (4)
C20.30531 (19)0.56310 (6)0.56377 (13)0.0503 (4)
C30.2424 (2)0.52248 (6)0.50902 (14)0.0548 (4)
H30.17610.52540.44330.066*
C40.2809 (2)0.47693 (6)0.55490 (15)0.0554 (4)
C50.3825 (2)0.47286 (6)0.65266 (15)0.0578 (4)
C60.4455 (2)0.51427 (7)0.70638 (15)0.0585 (4)
H60.51330.51180.77150.070*
C70.40453 (19)0.55905 (6)0.66043 (14)0.0516 (4)
C80.4518 (2)0.60897 (7)0.69910 (14)0.0569 (4)
C90.3879 (2)0.69277 (6)0.62605 (15)0.0557 (4)
C100.3223 (3)0.71816 (7)0.71829 (17)0.0702 (5)
C110.3314 (3)0.76849 (8)0.7209 (2)0.0850 (6)
H110.28700.78570.78310.102*
C120.4067 (3)0.79318 (8)0.6309 (2)0.0867 (7)
H120.41260.82710.63260.104*
C130.4725 (3)0.76831 (8)0.5395 (2)0.0867 (7)
H130.52300.78510.47900.104*
C140.4637 (2)0.71824 (7)0.53769 (17)0.0687 (5)
N10.37841 (17)0.64082 (5)0.61972 (11)0.0540 (3)
O10.20978 (16)0.63434 (4)0.45785 (10)0.0670 (3)
O20.53535 (19)0.62065 (5)0.78115 (12)0.0813 (4)
Cl10.20110 (7)0.425557 (17)0.48901 (4)0.07471 (19)
Cl20.43176 (8)0.416515 (19)0.70844 (5)0.0847 (2)
F10.5355 (3)0.69169 (7)0.45401 (16)0.0918 (7)0.669 (3)
F20.2785 (5)0.68818 (15)0.8105 (3)0.0846 (14)0.331 (3)
H100.27210.70190.78120.102*0.669 (3)
H140.50770.70270.47240.102*0.331 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (9)0.0555 (9)0.0519 (8)0.0034 (7)0.0010 (7)0.0013 (7)
C20.0466 (8)0.0536 (9)0.0508 (8)0.0033 (7)0.0030 (7)0.0024 (7)
C30.0548 (9)0.0580 (9)0.0517 (9)0.0044 (7)0.0005 (7)0.0001 (7)
C40.0535 (9)0.0547 (9)0.0579 (9)0.0009 (7)0.0110 (8)0.0015 (7)
C50.0549 (9)0.0571 (10)0.0613 (9)0.0070 (7)0.0107 (8)0.0102 (8)
C60.0530 (9)0.0664 (11)0.0559 (9)0.0022 (8)0.0015 (7)0.0100 (8)
C70.0451 (8)0.0571 (9)0.0527 (8)0.0007 (7)0.0012 (7)0.0051 (7)
C80.0490 (9)0.0633 (11)0.0583 (9)0.0074 (8)0.0035 (8)0.0073 (8)
C90.0495 (9)0.0536 (9)0.0642 (10)0.0071 (7)0.0033 (8)0.0033 (8)
C100.0716 (12)0.0697 (12)0.0694 (12)0.0167 (10)0.0057 (10)0.0074 (9)
C110.0756 (14)0.0754 (13)0.1040 (17)0.0095 (11)0.0001 (12)0.0284 (12)
C120.0862 (15)0.0553 (11)0.1186 (19)0.0149 (10)0.0175 (14)0.0007 (12)
C130.0981 (17)0.0699 (13)0.0921 (15)0.0261 (12)0.0062 (13)0.0163 (11)
C140.0676 (12)0.0668 (11)0.0717 (11)0.0108 (9)0.0053 (10)0.0052 (9)
N10.0530 (8)0.0533 (7)0.0556 (7)0.0044 (6)0.0038 (6)0.0048 (6)
O10.0792 (9)0.0590 (7)0.0629 (7)0.0081 (6)0.0172 (6)0.0035 (5)
O20.0848 (10)0.0764 (9)0.0826 (9)0.0197 (7)0.0339 (8)0.0115 (7)
Cl10.0859 (4)0.0561 (3)0.0822 (3)0.0074 (2)0.0026 (3)0.0062 (2)
Cl20.0989 (4)0.0610 (3)0.0943 (4)0.0118 (3)0.0031 (3)0.0214 (2)
F10.1037 (15)0.0859 (13)0.0857 (12)0.0125 (10)0.0384 (11)0.0034 (10)
F20.086 (3)0.095 (3)0.073 (2)0.018 (2)0.0152 (18)0.0176 (18)
Geometric parameters (Å, º) top
C1—O11.1961 (19)C9—C101.376 (3)
C1—N11.405 (2)C9—C141.377 (2)
C1—C21.485 (2)C9—N11.425 (2)
C2—C31.374 (2)C10—C111.379 (3)
C2—C71.375 (2)C10—F21.390 (4)
C3—C41.389 (2)C10—H100.942 (2)
C3—H30.9300C11—C121.379 (3)
C4—C51.396 (3)C11—H110.9300
C4—Cl11.7213 (17)C12—C131.362 (3)
C5—C61.387 (3)C12—H120.9300
C5—Cl21.7169 (17)C13—C141.372 (3)
C6—C71.375 (2)C13—H130.9300
C6—H60.9300C14—F11.339 (3)
C7—C81.486 (2)C14—H140.935 (2)
C8—O21.204 (2)F1—H140.4311 (19)
C8—N11.395 (2)F2—H100.509 (4)
O1—C1—N1125.46 (15)C10—C9—N1121.51 (15)
O1—C1—C2129.22 (15)C14—C9—N1119.33 (16)
N1—C1—C2105.32 (13)C9—C10—C11120.04 (19)
C3—C2—C7121.37 (15)C9—C10—F2113.1 (2)
C3—C2—C1130.02 (15)C11—C10—F2125.8 (2)
C7—C2—C1108.60 (14)C9—C10—H10121.51 (19)
C2—C3—C4117.92 (16)C11—C10—H10118.4 (2)
C2—C3—H3121.0C10—C11—C12119.7 (2)
C4—C3—H3121.0C10—C11—H11120.1
C3—C4—C5120.63 (16)C12—C11—H11120.1
C3—C4—Cl1118.77 (14)C13—C12—C11120.6 (2)
C5—C4—Cl1120.61 (13)C13—C12—H12119.7
C6—C5—C4120.61 (15)C11—C12—H12119.7
C6—C5—Cl2118.79 (14)C12—C13—C14119.4 (2)
C4—C5—Cl2120.60 (14)C12—C13—H13120.3
C7—C6—C5117.91 (16)C14—C13—H13120.3
C7—C6—H6121.0F1—C14—C13122.1 (2)
C5—C6—H6121.0F1—C14—C9116.75 (17)
C6—C7—C2121.55 (16)C13—C14—C9121.1 (2)
C6—C7—C8129.94 (15)C13—C14—H14116.5 (2)
C2—C7—C8108.50 (14)C9—C14—H14122.33 (19)
O2—C8—N1125.90 (17)C8—N1—C1111.95 (13)
O2—C8—C7128.49 (16)C8—N1—C9124.52 (14)
N1—C8—C7105.61 (14)C1—N1—C9123.45 (14)
C10—C9—C14119.16 (17)
O1—C1—C2—C30.3 (3)N1—C9—C10—C11179.04 (18)
N1—C1—C2—C3179.36 (16)C14—C9—C10—F2168.5 (2)
O1—C1—C2—C7179.79 (17)N1—C9—C10—F211.8 (3)
N1—C1—C2—C70.13 (17)C9—C10—C11—C120.1 (3)
C7—C2—C3—C40.5 (2)F2—C10—C11—C12167.6 (3)
C1—C2—C3—C4179.97 (15)C10—C11—C12—C130.2 (4)
C2—C3—C4—C50.9 (2)C11—C12—C13—C140.1 (4)
C2—C3—C4—Cl1179.09 (12)C12—C13—C14—F1175.6 (2)
C3—C4—C5—C60.6 (3)C12—C13—C14—C90.7 (3)
Cl1—C4—C5—C6179.39 (13)C10—C9—C14—F1175.55 (19)
C3—C4—C5—Cl2179.33 (13)N1—C9—C14—F14.7 (3)
Cl1—C4—C5—Cl20.7 (2)C10—C9—C14—C131.0 (3)
C4—C5—C6—C70.1 (2)N1—C9—C14—C13178.76 (19)
Cl2—C5—C6—C7179.98 (12)O2—C8—N1—C1178.75 (17)
C5—C6—C7—C20.5 (2)C7—C8—N1—C11.21 (18)
C5—C6—C7—C8179.55 (16)O2—C8—N1—C91.9 (3)
C3—C2—C7—C60.2 (2)C7—C8—N1—C9178.08 (14)
C1—C2—C7—C6179.39 (14)O1—C1—N1—C8179.45 (16)
C3—C2—C7—C8179.87 (15)C2—C1—N1—C80.86 (17)
C1—C2—C7—C80.59 (18)O1—C1—N1—C92.5 (3)
C6—C7—C8—O21.2 (3)C2—C1—N1—C9177.77 (14)
C2—C7—C8—O2178.87 (17)C10—C9—N1—C862.0 (2)
C6—C7—C8—N1178.88 (16)C14—C9—N1—C8118.29 (19)
C2—C7—C8—N11.10 (18)C10—C9—N1—C1114.5 (2)
C14—C9—C10—C110.7 (3)C14—C9—N1—C165.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.993.844 (4)153
Symmetry code: (i) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H6Cl2FNO2
Mr310.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.0078 (3), 27.3570 (9), 11.5563 (5)
V3)2531.63 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.76 × 0.50 × 0.20
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.703, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
31181, 2384, 1956
Rint0.063
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.03
No. of reflections2384
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.9943.844 (4)152.6
Symmetry code: (i) x+1/2, y, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbdel-Hafez, A. A. M. (2004). Arch. Pharm. Res. 27, 495–501.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res. 4, 472–479.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLoudon, M. G. (2002). Organic Chemistry, 4th ed., pp. 837, 874–880. Oxford University Press.  Google Scholar
First citationSena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc. 18, 1224–1234.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds