organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o887-o888

Ethyl 1-(4-meth­oxy­phen­yl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-meth­oxy­phen­yl)azetidin-2-yl]-2,3,10,10a-tetra­hydro-1H,5H-pyrrolo[1,2-b]iso­quinoline-10a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 8 April 2008; accepted 15 April 2008; online 23 April 2008)

In the mol­ecule of the title compound, C38H37N3O7, the pyrrolidine ring adopts a twist conformation and the six-membered heterocyclic ring has a boat conformation. In the crystal structure, mol­ecules are linked into a three-dimensional framework through inter­molecular C—H⋯O hydrogen bonds. One ethyl group is disordered over two positions with occupancies 0.67 (2)/0.33 (2).

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Borthwick et al. (2003[Borthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Welingerten, C. G. & Woolven, J. M. (2003). J. Med. Chem. 46, 4428-4449.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Fernandes et al. (2004[Fernandes, E., Costa, D., Tosta, S. A., Lima, J. L. & Reis, S. (2004). Free Radic. Biol. Med. 37, 1895-1905.]); Kamala et al. (2008[Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716-o717.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry, Vol. II, ch. 1.18-1.20. New York: Peragmon.]); Morin & Gorman (1982[Morin, R. B. & Gorman, M. (1982). Chemistry and Biology of Beta-Lactam Antibiotics, pp. 1-3. New York: Academic Press.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Sundari et al. (2006[Sundari, B., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, x57-x58.]); Verkman (1990[Verkman, A. S. (1990). Am. J. Physiol. Cell Physiol. 259, C375-C388.]); Weissman et al. (1993[Weissman, D., Poli, G., Bousseau, A. & Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537-2541.]); Georg & Ravikumar (1993[Georg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of Beta-Lactams, pp. 295-368. New York: VCH.]); LaVoie et al. (1983[LaVoie, E. J., Adams, E. A., Shigematsu, A. & Hoffman, D. (1983). Carcinogenesis, 4, P1169-P1173.]).

[Scheme 1]

Experimental

Crystal data
  • C38H37N3O7

  • Mr = 647.71

  • Orthorhombic, P 21 21 21

  • a = 9.0149 (3) Å

  • b = 11.0865 (4) Å

  • c = 33.3731 (11) Å

  • V = 3335.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.982, Tmax = 0.982

  • 68599 measured reflections

  • 3960 independent reflections

  • 3318 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.107

  • S = 1.05

  • 3960 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.98 2.42 3.260 (3) 143
C20—H20⋯O1ii 0.93 2.47 3.397 (3) 172
C29—H29⋯O3 0.93 2.59 3.442 (3) 152
C29—H29⋯N2 0.93 2.50 3.168 (3) 128
C33—H33⋯O1 0.93 2.44 3.054 (4) 123
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Quinoline is a hepatocarcinogen in mice and rats, a mutagen in Salmonella typhimurium and induces unscheduled DNA synthesis in primary cultures of rat hepatocytes (LaVoie et al., 1983). Quinolinium based chloride sensitive flourescent indicators provide a new approach to study chloride transport mechanisms and regulation (Verkman, 1990). Pyrrole derivatives inhibit cytokine-dependent induction of human immunodeficiency virus (HIV) expression in chronically infected promonocytic cells (Weissman et al., 1993). Pyrroles possess anti inflammatory (Fernandes et al., 2004), anti viral (Borthwick et al., 2003), antifungal and antimicrobial activities (Amal Raj et al., 2003). β lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Morin & Gorman, 1982; Georg & Ravikumar, 1993; Katritzky et al., 1996). The most commonly used β lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). Due to these importance the crystal structure determination of the title compound (I) was carried out and the results are presented here.

Fig 1 shows a plot of compound (I). Bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those of reported structures (Kamala et al., 2008; Sundari et al., 2006).

In the molecule the pyrrolidine ring exhibits a twist conformation with asymetry parameters (Nardelli,1983)ΔCs(C5) = 5.2 (2), ΔC2(C6) = 39.6 (2) and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.274 (3)Å and ϕ2 =267.5 (5)°. The six membered ring C7/C8/C9/C14/C15/N2 exhibits a boat conformation with the puckering parameters Q=0.699 (3) Å, Θ = 88.8 (2)° and ϕ = 120.1 (2)°. The sum of bond angles around N1 [353.59°], and around N3 [359.94°] indicate sp2, those around atom N2 [338.58°] indicate sp3 hybridization. The pyrrolidine ring and the phenyl ring C9—C14 are nearly planar with each other with a dihedral angle of 9.49 (7)° while the phenyl rings are oriented at right angles to each other making an angle of 87.48 (7)°.

In the crystal packing, C—H···O interactions stabilize crystal structure.

Related literature top

For related literature, see: Allen et al. (1987); Amal Raj et al. (2003); Borthwick et al. (2003); Brakhage (1998); Cremer & Pople (1975); Fernandes et al. (2004); Kamala et al. (2008); Katritzky et al. (1996); Morin & Gorman (1982); Nardelli (1983); Sundari et al. (2006); Verkman (1990); Weissman et al. (1993); Georg & Ravikumar (1993); LaVoie et al. (1983).

Experimental top

To a stirring solution of 1 mmol of 5-[1'-N-(p-methoxy)-phenyl)-3'-phenyl- azetidine-2'-one]-4-nitro-3-(p-methoxy)-phenyl-2-ethoxy carbonyl-2-benzyl -pyrrolidine in 20 ml of dry chloroform was added 1 mmol of paraformaldehyde followed by 0.1 mmol of trifluroacetic acid at room temperature. After completion of the reaction the mixture was washed with water and dried over Na2SO4. The solvent was removed under reduced pressure and the crude product was subjected to column chromatography with hexane ethylacetate (9:1) to obtain pure cyclized product. The compound was recrystallized from ethylacetae.

Refinement top

In the absence of anomalous scatterers, Friedel pairs were merged and the absolute configuration was arbitrarily set. One ethyl group is disordered over two positions (C36A/C37A and C36B/C37B), with refined occupancies of 0.67 (2) and 0.33 (2). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along the c axis.
Ethyl 1-(4-methoxyphenyl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-methoxyphenyl)azetidin-2-yl]-2,3,10,10a-tetrahydro-1H,5H-pyrrolo[1,2-b]isoquinoline-10a-carboxylate top
Crystal data top
C38H37N3O7F(000) = 1368
Mr = 647.71Dx = 1.290 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 68599 reflections
a = 9.0149 (3) Åθ = 1.2–26.7°
b = 11.0865 (4) ŵ = 0.09 mm1
c = 33.3731 (11) ÅT = 293 K
V = 3335.4 (2) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker KappaAPEX2
diffractometer
3960 independent reflections
Radiation source: fine-focus sealed tube3318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 26.7°, θmin = 1.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.982, Tmax = 0.982k = 1313
68599 measured reflectionsl = 4242
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.4467P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3960 reflectionsΔρmax = 0.14 e Å3
453 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (7)
Crystal data top
C38H37N3O7V = 3335.4 (2) Å3
Mr = 647.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0149 (3) ŵ = 0.09 mm1
b = 11.0865 (4) ÅT = 293 K
c = 33.3731 (11) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker KappaAPEX2
diffractometer
3960 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3318 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.033
68599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
3960 reflectionsΔρmin = 0.16 e Å3
453 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5650 (3)0.1895 (2)0.11810 (7)0.0428 (5)
H10.60780.19970.14490.051*
C20.6846 (3)0.2110 (2)0.08439 (7)0.0465 (5)
H20.78110.23000.09640.056*
C30.6714 (3)0.0759 (2)0.07673 (7)0.0518 (6)
C40.4217 (3)0.26005 (18)0.11375 (6)0.0392 (5)
H40.39560.26130.08530.047*
C50.4352 (3)0.3919 (2)0.12799 (7)0.0441 (5)
H50.46610.44350.10570.053*
C60.2805 (3)0.4279 (2)0.14202 (7)0.0452 (5)
H60.29110.47920.16580.054*
C70.2091 (3)0.3061 (2)0.15540 (6)0.0418 (5)
C80.0419 (3)0.2946 (2)0.14583 (8)0.0509 (6)
H8A0.01440.34900.16280.061*
H8B0.02400.31640.11810.061*
C90.0065 (3)0.1674 (2)0.15306 (7)0.0481 (6)
C100.1225 (3)0.1330 (3)0.17775 (8)0.0601 (7)
H100.17900.19110.19080.072*
C110.1538 (4)0.0124 (3)0.18292 (9)0.0702 (8)
H110.23230.01060.19930.084*
C120.0702 (4)0.0739 (3)0.16414 (10)0.0740 (9)
H120.09260.15510.16770.089*
C130.0469 (4)0.0409 (3)0.13991 (9)0.0645 (7)
H130.10390.09960.12730.077*
C140.0792 (3)0.0797 (2)0.13448 (7)0.0505 (6)
C150.2094 (3)0.1248 (2)0.11103 (7)0.0480 (5)
H15A0.27170.05760.10320.058*
H15B0.17520.16500.08690.058*
C160.1960 (3)0.4982 (2)0.11054 (7)0.0469 (5)
C170.0909 (3)0.5824 (2)0.12263 (8)0.0601 (7)
H170.07440.59380.14990.072*
C180.0110 (4)0.6489 (2)0.09578 (9)0.0658 (7)
H180.06000.70330.10480.079*
C190.0358 (3)0.6354 (2)0.05499 (8)0.0592 (7)
C200.1387 (3)0.5535 (3)0.04209 (8)0.0598 (7)
H200.15630.54370.01480.072*
C210.2168 (3)0.4850 (2)0.06968 (7)0.0550 (6)
H210.28520.42860.06050.066*
C220.6510 (3)0.2965 (2)0.05059 (7)0.0484 (5)
C230.7102 (4)0.4110 (3)0.05080 (9)0.0628 (7)
H230.77700.43330.07070.075*
C240.6704 (4)0.4931 (3)0.02139 (11)0.0822 (10)
H240.71050.57040.02180.099*
C250.5729 (4)0.4619 (3)0.00828 (10)0.0822 (10)
H250.54480.51810.02750.099*
C260.5175 (4)0.3476 (3)0.00931 (8)0.0732 (9)
H260.45310.32520.02980.088*
C270.5563 (3)0.2648 (3)0.01987 (7)0.0563 (6)
H270.51820.18690.01880.068*
C280.5268 (3)0.0417 (2)0.12839 (7)0.0471 (5)
C290.4518 (3)0.0313 (2)0.16414 (8)0.0549 (6)
H290.42390.04460.17330.066*
C300.4176 (3)0.1326 (2)0.18659 (8)0.0579 (7)
H300.36820.12440.21090.069*
C310.4563 (4)0.2445 (2)0.17306 (8)0.0583 (7)
C320.5345 (4)0.2552 (2)0.13739 (8)0.0698 (8)
H320.56350.33110.12860.084*
C330.5695 (4)0.1558 (2)0.11504 (8)0.0615 (7)
H330.62140.16420.09110.074*
C340.3451 (6)0.3423 (3)0.22891 (10)0.1026 (15)
H34A0.33170.42150.23990.154*
H34B0.25000.30670.22360.154*
H34C0.39840.29300.24770.154*
C350.2155 (3)0.2959 (2)0.20132 (7)0.0509 (6)
C36A0.227 (2)0.1693 (8)0.2565 (2)0.099 (4)0.67 (2)
H36A0.31780.13710.26770.119*0.67 (2)
H36B0.21320.24870.26810.119*0.67 (2)
C36B0.2763 (18)0.166 (2)0.2577 (7)0.094 (8)0.33 (2)
H36C0.23700.23190.27370.113*0.33 (2)
H36D0.38010.15410.26410.113*0.33 (2)
C37A0.1243 (12)0.1053 (17)0.2693 (3)0.113 (5)0.67 (2)
H37A0.13280.09770.29780.170*0.67 (2)
H37B0.13000.02690.25720.170*0.67 (2)
H37C0.03090.14190.26270.170*0.67 (2)
C37B0.182 (4)0.0452 (14)0.2633 (4)0.130 (9)0.33 (2)
H37D0.17290.02720.29140.196*0.33 (2)
H37E0.23110.02030.25000.196*0.33 (2)
H37F0.08490.05600.25200.196*0.33 (2)
C380.0228 (5)0.6993 (3)0.01129 (10)0.0934 (11)
H38A0.08710.75430.02520.140*
H38B0.04310.61840.01990.140*
H38C0.07860.71900.01710.140*
N10.5645 (2)0.06099 (17)0.10584 (6)0.0476 (5)
N20.2955 (2)0.20995 (16)0.13575 (5)0.0402 (4)
N30.5465 (3)0.40018 (18)0.16171 (7)0.0531 (5)
O10.7299 (3)0.00518 (18)0.05473 (6)0.0730 (6)
O20.4270 (3)0.35051 (16)0.19254 (5)0.0772 (7)
O30.2539 (2)0.18744 (16)0.21413 (5)0.0614 (5)
O40.1785 (3)0.37724 (19)0.22274 (6)0.0777 (6)
O50.0475 (3)0.70850 (19)0.03026 (7)0.0815 (6)
O60.5102 (2)0.3667 (2)0.19483 (6)0.0699 (6)
O70.6700 (2)0.4365 (2)0.15328 (7)0.0782 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (12)0.0404 (11)0.0429 (11)0.0039 (10)0.0002 (10)0.0047 (9)
C20.0392 (11)0.0484 (13)0.0519 (12)0.0036 (10)0.0007 (10)0.0082 (10)
C30.0535 (14)0.0512 (13)0.0508 (13)0.0027 (12)0.0079 (11)0.0064 (11)
C40.0432 (11)0.0373 (10)0.0371 (10)0.0031 (9)0.0003 (9)0.0023 (9)
C50.0466 (12)0.0394 (11)0.0464 (11)0.0039 (10)0.0068 (10)0.0027 (9)
C60.0509 (13)0.0396 (11)0.0452 (12)0.0006 (11)0.0026 (10)0.0048 (10)
C70.0449 (11)0.0428 (11)0.0377 (10)0.0001 (11)0.0014 (9)0.0024 (9)
C80.0424 (12)0.0563 (14)0.0540 (13)0.0024 (12)0.0023 (11)0.0022 (11)
C90.0394 (12)0.0631 (15)0.0419 (11)0.0043 (11)0.0057 (10)0.0048 (11)
C100.0426 (13)0.0831 (19)0.0546 (14)0.0019 (14)0.0012 (12)0.0051 (14)
C110.0568 (16)0.091 (2)0.0629 (16)0.0254 (17)0.0044 (14)0.0133 (16)
C120.074 (2)0.0660 (18)0.082 (2)0.0271 (18)0.0046 (17)0.0048 (16)
C130.0657 (18)0.0564 (15)0.0716 (17)0.0199 (15)0.0026 (15)0.0070 (13)
C140.0469 (13)0.0582 (14)0.0463 (12)0.0132 (12)0.0050 (10)0.0018 (11)
C150.0487 (13)0.0488 (12)0.0464 (12)0.0099 (11)0.0007 (11)0.0088 (10)
C160.0530 (14)0.0380 (11)0.0498 (12)0.0001 (11)0.0011 (11)0.0026 (10)
C170.0734 (18)0.0538 (14)0.0531 (14)0.0148 (14)0.0002 (13)0.0067 (12)
C180.0713 (18)0.0537 (15)0.0723 (17)0.0186 (14)0.0074 (15)0.0066 (14)
C190.0673 (17)0.0438 (13)0.0665 (15)0.0025 (13)0.0126 (14)0.0081 (12)
C200.0722 (17)0.0584 (15)0.0488 (13)0.0083 (15)0.0034 (13)0.0048 (11)
C210.0643 (16)0.0488 (13)0.0520 (13)0.0105 (13)0.0008 (12)0.0006 (11)
C220.0410 (12)0.0519 (13)0.0524 (13)0.0002 (11)0.0046 (10)0.0104 (11)
C230.0612 (16)0.0583 (16)0.0689 (16)0.0106 (14)0.0019 (14)0.0140 (13)
C240.093 (2)0.0612 (18)0.093 (2)0.0071 (18)0.005 (2)0.0275 (17)
C250.085 (2)0.089 (2)0.0730 (19)0.013 (2)0.0069 (18)0.0370 (18)
C260.0676 (18)0.102 (2)0.0499 (14)0.0056 (18)0.0012 (13)0.0150 (16)
C270.0539 (15)0.0645 (15)0.0506 (13)0.0039 (13)0.0025 (12)0.0048 (12)
C280.0497 (13)0.0423 (12)0.0493 (12)0.0023 (11)0.0018 (11)0.0062 (10)
C290.0641 (16)0.0421 (12)0.0584 (14)0.0028 (12)0.0105 (13)0.0037 (11)
C300.0681 (17)0.0518 (14)0.0537 (14)0.0077 (14)0.0097 (13)0.0072 (11)
C310.0806 (19)0.0440 (13)0.0504 (13)0.0154 (14)0.0013 (14)0.0043 (11)
C320.110 (3)0.0406 (13)0.0590 (15)0.0050 (16)0.0063 (17)0.0015 (12)
C330.085 (2)0.0484 (14)0.0507 (13)0.0015 (14)0.0103 (14)0.0000 (11)
C340.168 (4)0.074 (2)0.0659 (19)0.049 (3)0.029 (2)0.0030 (17)
C350.0561 (14)0.0558 (14)0.0406 (11)0.0051 (13)0.0009 (11)0.0045 (11)
C36A0.185 (11)0.086 (5)0.027 (3)0.057 (6)0.007 (5)0.006 (3)
C36B0.052 (6)0.17 (2)0.066 (9)0.037 (11)0.012 (5)0.039 (9)
C37A0.100 (6)0.179 (13)0.062 (4)0.039 (7)0.002 (4)0.032 (6)
C37B0.26 (3)0.073 (9)0.056 (6)0.017 (12)0.060 (12)0.022 (6)
C380.108 (3)0.091 (2)0.082 (2)0.013 (2)0.021 (2)0.0345 (18)
N10.0521 (11)0.0395 (10)0.0512 (10)0.0007 (9)0.0073 (9)0.0045 (8)
N20.0409 (10)0.0394 (9)0.0404 (9)0.0045 (8)0.0009 (8)0.0033 (8)
N30.0540 (13)0.0427 (10)0.0625 (13)0.0060 (10)0.0127 (11)0.0022 (10)
O10.0886 (15)0.0584 (11)0.0719 (12)0.0103 (11)0.0320 (12)0.0013 (10)
O20.1283 (19)0.0457 (10)0.0576 (10)0.0274 (12)0.0074 (12)0.0055 (8)
O30.0868 (13)0.0590 (10)0.0386 (8)0.0079 (10)0.0050 (9)0.0070 (8)
O40.1063 (18)0.0765 (13)0.0502 (10)0.0096 (13)0.0095 (11)0.0168 (10)
O50.0965 (16)0.0656 (12)0.0824 (14)0.0216 (13)0.0214 (13)0.0100 (11)
O60.0764 (13)0.0744 (13)0.0590 (11)0.0144 (11)0.0207 (10)0.0107 (10)
O70.0528 (12)0.0899 (15)0.0921 (14)0.0189 (12)0.0117 (11)0.0037 (12)
Geometric parameters (Å, º) top
C1—N11.482 (3)C22—C231.377 (4)
C1—C41.517 (3)C22—C271.380 (4)
C1—C21.577 (3)C23—C241.386 (4)
C1—H10.9800C23—H230.9300
C2—C221.504 (3)C24—C251.369 (5)
C2—C31.524 (4)C24—H240.9300
C2—H20.9800C25—C261.362 (5)
C3—O11.197 (3)C25—H250.9300
C3—N11.378 (3)C26—C271.384 (4)
C4—N21.464 (3)C26—H260.9300
C4—C51.542 (3)C27—H270.9300
C4—H40.9800C28—C291.376 (4)
C5—N31.511 (3)C28—C331.395 (3)
C5—C61.524 (3)C28—N11.406 (3)
C5—H50.9800C29—C301.384 (3)
C6—C161.514 (3)C29—H290.9300
C6—C71.561 (3)C30—C311.366 (4)
C6—H60.9800C30—H300.9300
C7—N21.474 (3)C31—O21.369 (3)
C7—C351.538 (3)C31—C321.388 (4)
C7—C81.545 (3)C32—C331.367 (4)
C8—C91.496 (4)C32—H320.9300
C8—H8A0.9700C33—H330.9300
C8—H8B0.9700C34—O21.424 (4)
C9—C101.385 (4)C34—H34A0.9600
C9—C141.388 (4)C34—H34B0.9600
C10—C111.377 (4)C34—H34C0.9600
C10—H100.9300C35—O41.198 (3)
C11—C121.370 (5)C35—O31.322 (3)
C11—H110.9300C36A—C37A1.240 (17)
C12—C131.380 (4)C36A—O31.448 (8)
C12—H120.9300C36A—H36A0.9700
C13—C141.380 (4)C36A—H36B0.9700
C13—H130.9300C36B—O31.49 (2)
C14—C151.497 (3)C36B—C37B1.60 (3)
C15—N21.474 (3)C36B—H36C0.9700
C15—H15A0.9700C36B—H36D0.9700
C15—H15B0.9700C37A—H37A0.9600
C16—C211.384 (3)C37A—H37B0.9600
C16—C171.390 (3)C37A—H37C0.9600
C17—C181.366 (4)C37B—H37D0.9600
C17—H170.9300C37B—H37E0.9600
C18—C191.387 (4)C37B—H37F0.9600
C18—H180.9300C38—O51.408 (4)
C19—C201.368 (4)C38—H38A0.9600
C19—O51.379 (3)C38—H38B0.9600
C20—C211.385 (4)C38—H38C0.9600
C20—H200.9300N3—O61.211 (3)
C21—H210.9300N3—O71.217 (3)
N1—C1—C4117.82 (19)C23—C22—C2119.9 (2)
N1—C1—C287.16 (17)C27—C22—C2121.4 (2)
C4—C1—C2115.87 (17)C22—C23—C24120.1 (3)
N1—C1—H1111.3C22—C23—H23120.0
C4—C1—H1111.3C24—C23—H23120.0
C2—C1—H1111.3C25—C24—C23120.8 (3)
C22—C2—C3118.6 (2)C25—C24—H24119.6
C22—C2—C1119.5 (2)C23—C24—H24119.6
C3—C2—C185.25 (17)C26—C25—C24119.3 (3)
C22—C2—H2110.4C26—C25—H25120.4
C3—C2—H2110.4C24—C25—H25120.4
C1—C2—H2110.4C25—C26—C27120.4 (3)
O1—C3—N1131.5 (2)C25—C26—H26119.8
O1—C3—C2135.4 (2)C27—C26—H26119.8
N1—C3—C293.13 (19)C22—C27—C26120.7 (3)
N2—C4—C1114.74 (16)C22—C27—H27119.7
N2—C4—C5105.44 (17)C26—C27—H27119.7
C1—C4—C5113.11 (18)C29—C28—C33119.2 (2)
N2—C4—H4107.7C29—C28—N1121.0 (2)
C1—C4—H4107.7C33—C28—N1119.8 (2)
C5—C4—H4107.7C28—C29—C30120.7 (2)
N3—C5—C6111.29 (19)C28—C29—H29119.6
N3—C5—C4109.85 (18)C30—C29—H29119.6
C6—C5—C4105.74 (18)C31—C30—C29120.1 (2)
N3—C5—H5110.0C31—C30—H30120.0
C6—C5—H5110.0C29—C30—H30120.0
C4—C5—H5110.0C30—C31—O2125.0 (2)
C16—C6—C5112.48 (19)C30—C31—C32119.4 (2)
C16—C6—C7115.8 (2)O2—C31—C32115.6 (2)
C5—C6—C7103.80 (18)C33—C32—C31121.1 (3)
C16—C6—H6108.1C33—C32—H32119.5
C5—C6—H6108.1C31—C32—H32119.5
C7—C6—H6108.1C32—C33—C28119.5 (2)
N2—C7—C35111.71 (19)C32—C33—H33120.2
N2—C7—C8111.33 (19)C28—C33—H33120.2
C35—C7—C8103.68 (19)O2—C34—H34A109.5
N2—C7—C6106.29 (17)O2—C34—H34B109.5
C35—C7—C6109.46 (19)H34A—C34—H34B109.5
C8—C7—C6114.5 (2)O2—C34—H34C109.5
C9—C8—C7109.2 (2)H34A—C34—H34C109.5
C9—C8—H8A109.8H34B—C34—H34C109.5
C7—C8—H8A109.8O4—C35—O3124.4 (2)
C9—C8—H8B109.8O4—C35—C7121.9 (2)
C7—C8—H8B109.8O3—C35—C7113.5 (2)
H8A—C8—H8B108.3C37A—C36A—O3122.8 (11)
C10—C9—C14119.5 (3)C37A—C36A—H36A106.6
C10—C9—C8125.2 (3)O3—C36A—H36A106.6
C14—C9—C8115.2 (2)C37A—C36A—H36B106.6
C11—C10—C9119.8 (3)O3—C36A—H36B106.6
C11—C10—H10120.1H36A—C36A—H36B106.6
C9—C10—H10120.1O3—C36B—C37B100.1 (15)
C12—C11—C10120.6 (3)O3—C36B—H36C111.7
C12—C11—H11119.7C37B—C36B—H36C111.7
C10—C11—H11119.7O3—C36B—H36D111.7
C11—C12—C13120.2 (3)C37B—C36B—H36D111.7
C11—C12—H12119.9H36C—C36B—H36D109.5
C13—C12—H12119.9C36A—C37A—H37A109.5
C14—C13—C12119.7 (3)C36A—C37A—H37B109.5
C14—C13—H13120.2H37A—C37A—H37B109.5
C12—C13—H13120.2C36A—C37A—H37C109.5
C13—C14—C9120.2 (3)H37A—C37A—H37C109.5
C13—C14—C15123.9 (3)H37B—C37A—H37C109.5
C9—C14—C15115.8 (2)C36B—C37B—H37D109.5
N2—C15—C14109.52 (18)C36B—C37B—H37E109.5
N2—C15—H15A109.8H37D—C37B—H37E109.5
C14—C15—H15A109.8C36B—C37B—H37F109.5
N2—C15—H15B109.8H37D—C37B—H37F109.5
C14—C15—H15B109.8H37E—C37B—H37F109.5
H15A—C15—H15B108.2O5—C38—H38A109.5
C21—C16—C17116.7 (2)O5—C38—H38B109.5
C21—C16—C6124.1 (2)H38A—C38—H38B109.5
C17—C16—C6119.2 (2)O5—C38—H38C109.5
C18—C17—C16122.1 (2)H38A—C38—H38C109.5
C18—C17—H17118.9H38B—C38—H38C109.5
C16—C17—H17118.9C3—N1—C28130.0 (2)
C17—C18—C19120.0 (3)C3—N1—C194.42 (18)
C17—C18—H18120.0C28—N1—C1129.14 (19)
C19—C18—H18120.0C4—N2—C7111.06 (17)
C20—C19—O5124.8 (3)C4—N2—C15111.80 (16)
C20—C19—C18119.3 (2)C7—N2—C15115.71 (18)
O5—C19—C18115.9 (3)O6—N3—O7124.1 (2)
C19—C20—C21120.0 (2)O6—N3—C5118.8 (2)
C19—C20—H20120.0O7—N3—C5117.1 (2)
C21—C20—H20120.0C31—O2—C34116.7 (2)
C16—C21—C20121.9 (3)C35—O3—C36A113.4 (5)
C16—C21—H21119.1C35—O3—C36B119.7 (10)
C20—C21—H21119.1C36A—O3—C36B17.5 (10)
C23—C22—C27118.6 (2)C19—O5—C38117.4 (3)
N1—C1—C2—C22119.1 (2)C2—C22—C23—C24175.0 (3)
C4—C1—C2—C220.6 (3)C22—C23—C24—C250.3 (5)
N1—C1—C2—C31.17 (17)C23—C24—C25—C261.6 (5)
C4—C1—C2—C3120.9 (2)C24—C25—C26—C271.6 (5)
C22—C2—C3—O161.1 (4)C23—C22—C27—C262.3 (4)
C1—C2—C3—O1177.8 (3)C2—C22—C27—C26174.9 (3)
C22—C2—C3—N1119.9 (2)C25—C26—C27—C220.4 (5)
C1—C2—C3—N11.26 (18)C33—C28—C29—C300.6 (4)
N1—C1—C4—N258.1 (3)N1—C28—C29—C30178.7 (3)
C2—C1—C4—N2159.31 (18)C28—C29—C30—C310.9 (5)
N1—C1—C4—C5179.16 (17)C29—C30—C31—O2179.4 (3)
C2—C1—C4—C579.7 (2)C29—C30—C31—C322.2 (5)
N2—C4—C5—N394.8 (2)C30—C31—C32—C331.9 (5)
C1—C4—C5—N331.3 (3)O2—C31—C32—C33179.5 (3)
N2—C4—C5—C625.4 (2)C31—C32—C33—C280.4 (5)
C1—C4—C5—C6151.54 (18)C29—C28—C33—C320.9 (5)
N3—C5—C6—C16142.32 (19)N1—C28—C33—C32179.0 (3)
C4—C5—C6—C1698.4 (2)N2—C7—C35—O4164.9 (2)
N3—C5—C6—C791.7 (2)C8—C7—C35—O475.2 (3)
C4—C5—C6—C727.5 (2)C6—C7—C35—O447.4 (3)
C16—C6—C7—N2103.9 (2)N2—C7—C35—O320.1 (3)
C5—C6—C7—N219.9 (2)C8—C7—C35—O399.9 (3)
C16—C6—C7—C35135.3 (2)C6—C7—C35—O3137.6 (2)
C5—C6—C7—C35100.9 (2)O1—C3—N1—C2824.7 (5)
C16—C6—C7—C819.4 (3)C2—C3—N1—C28154.4 (2)
C5—C6—C7—C8143.24 (19)O1—C3—N1—C1177.8 (3)
N2—C7—C8—C949.1 (2)C2—C3—N1—C11.34 (19)
C35—C7—C8—C971.1 (2)C29—C28—N1—C3159.1 (3)
C6—C7—C8—C9169.71 (18)C33—C28—N1—C319.0 (4)
C7—C8—C9—C10125.3 (2)C29—C28—N1—C114.7 (4)
C7—C8—C9—C1451.4 (3)C33—C28—N1—C1163.4 (3)
C14—C9—C10—C111.5 (4)C4—C1—N1—C3119.2 (2)
C8—C9—C10—C11178.1 (3)C2—C1—N1—C31.30 (19)
C9—C10—C11—C120.6 (4)C4—C1—N1—C2887.3 (3)
C10—C11—C12—C130.3 (5)C2—C1—N1—C28154.8 (2)
C11—C12—C13—C140.3 (5)C1—C4—N2—C7138.00 (18)
C12—C13—C14—C90.5 (4)C5—C4—N2—C712.9 (2)
C12—C13—C14—C15175.9 (2)C1—C4—N2—C1591.1 (2)
C10—C9—C14—C131.4 (4)C5—C4—N2—C15143.76 (19)
C8—C9—C14—C13178.3 (2)C35—C7—N2—C4114.9 (2)
C10—C9—C14—C15175.3 (2)C8—C7—N2—C4129.7 (2)
C8—C9—C14—C151.7 (3)C6—C7—N2—C44.4 (2)
C13—C14—C15—N2127.0 (3)C35—C7—N2—C15116.2 (2)
C9—C14—C15—N249.5 (3)C8—C7—N2—C150.8 (3)
C5—C6—C16—C2129.0 (3)C6—C7—N2—C15124.4 (2)
C7—C6—C16—C2190.2 (3)C14—C15—N2—C4178.13 (19)
C5—C6—C16—C17150.5 (2)C14—C15—N2—C749.7 (3)
C7—C6—C16—C1790.3 (3)C6—C5—N3—O640.4 (3)
C21—C16—C17—C180.3 (4)C4—C5—N3—O676.4 (3)
C6—C16—C17—C18179.9 (3)C6—C5—N3—O7142.3 (2)
C16—C17—C18—C191.4 (5)C4—C5—N3—O7101.0 (2)
C17—C18—C19—C201.2 (5)C30—C31—O2—C342.4 (5)
C17—C18—C19—O5178.5 (3)C32—C31—O2—C34179.1 (3)
O5—C19—C20—C21179.7 (3)O4—C35—O3—C36A8.5 (8)
C18—C19—C20—C210.0 (4)C7—C35—O3—C36A166.4 (7)
C17—C16—C21—C201.0 (4)O4—C35—O3—C36B9.9 (10)
C6—C16—C21—C20178.6 (3)C7—C35—O3—C36B175.3 (9)
C19—C20—C21—C161.1 (5)C37A—C36A—O3—C35106.6 (10)
C3—C2—C22—C23156.6 (3)C37A—C36A—O3—C36B139 (5)
C1—C2—C22—C23101.9 (3)C37B—C36B—O3—C35132.2 (15)
C3—C2—C22—C2726.2 (3)C37B—C36B—O3—C36A59 (4)
C1—C2—C22—C2775.3 (3)C20—C19—O5—C381.1 (5)
C27—C22—C23—C242.3 (4)C18—C19—O5—C38178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.423.260 (3)143
C20—H20···O1ii0.932.473.397 (3)172
C29—H29···O30.932.593.442 (3)152
C29—H29···N20.932.503.168 (3)128
C33—H33···O10.932.443.054 (4)123
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC38H37N3O7
Mr647.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.0149 (3), 11.0865 (4), 33.3731 (11)
V3)3335.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker KappaAPEX2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
68599, 3960, 3318
Rint0.033
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.107, 1.06
No. of reflections3960
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.423.260 (3)143
C20—H20···O1ii0.932.473.397 (3)172
C29—H29···O30.932.593.442 (3)152
C29—H29···N20.932.503.168 (3)128
C33—H33···O10.932.443.054 (4)123
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Welingerten, C. G. & Woolven, J. M. (2003). J. Med. Chem. 46, 4428–4449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, E., Costa, D., Tosta, S. A., Lima, J. L. & Reis, S. (2004). Free Radic. Biol. Med. 37, 1895–1905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of Beta-Lactams, pp. 295–368. New York: VCH.  Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry, Vol. II, ch. 1.18–1.20. New York: Peragmon.  Google Scholar
First citationLaVoie, E. J., Adams, E. A., Shigematsu, A. & Hoffman, D. (1983). Carcinogenesis, 4, P1169–P1173.  Google Scholar
First citationMorin, R. B. & Gorman, M. (1982). Chemistry and Biology of Beta-Lactam Antibiotics, pp. 1–3. New York: Academic Press.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundari, B., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, x57–x58.  Google Scholar
First citationVerkman, A. S. (1990). Am. J. Physiol. Cell Physiol. 259, C375–C388.  CAS Google Scholar
First citationWeissman, D., Poli, G., Bousseau, A. & Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537–2541.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o887-o888
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds