organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-hy­droxy­methyl-2-methyl­pyridine-5-carboxyl­ate

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and bCancer Research Laboratory, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: pdw.boyd@auckland.ac.nz

(Received 14 April 2008; accepted 14 April 2008; online 23 April 2008)

The title compound, C10H13NO3, was obtained as a by-product of the aldolization reaction of furo[3,4-c]pyridin-3(1H)-one with thio­phene-2-carboxaldehyde. The substituents on the pyridine ring are nearly coplanar, with an 8.1 (2)° rotation of the hydroxmethyl group from this plane. The mol­ecules assemble in the crystal structure as chains via O—H⋯N hydrogen bonding between the pyridine N atom and a neighbouring hydroxy­methyl OH group.

Related literature

For related literature, see: Goswami et al. (2006[Goswami, S., Dey, S., Fun, H.-K. & Chantrapromma, S. (2006). Acta Cryst. E62, o3225-o3227.]), Wu et al. (2006[Wu, Y.-M., Dong, C.-C., Liu, S., Zhu, H.-J. & Wu, Y.-Z. (2006). Acta Cryst. E62, o2102-o2103.]). For bond-length data, see: Allen et al., (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3

  • Mr = 195.21

  • Monoclinic, P 21 /n

  • a = 4.4998 (2) Å

  • b = 15.4499 (8) Å

  • c = 14.2036 (7) Å

  • β = 96.417 (1)°

  • V = 981.27 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 87 (2) K

  • 0.32 × 0.18 × 0.12 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: none

  • 5759 measured reflections

  • 1987 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.02

  • 1987 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 2.01 2.8227 (17) 170
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are normal (Allen et al., 1987). The ethyl ester group is nearly coplanar with the pyridine ring (C1-C5,N1 rmsd 0.0064 Å; C2,C8,C9,C10,O1,O2 rmsd 0.0064 Å, interplanar angle 2.17 (9)°). The hydroxymethyl group is rotated slightly out of the plane (O3—C7—C3—C4 8.1 (2)°).

The molecules in the crystal are connected via hydrogen bonding between the pyridine N atom and an adjacent OH group (Table 1) to give chains along the c axis (Figure 2a). These chains are stacked along the a axis (Figure 2 b). Similar hydrogen bonding interactions are observed in other hydroxymethyl substituted pyridines (Goswami et al., 2006, Wu et al., 2006).

Related literature top

For related literature, see: Goswami et al. (2006), Wu et al. (2006). For bond-length data, see: Allen et al., (1987).

Experimental top

The title compound was obtained as a by-product of the aldolization reaction of furo[3,4-c]pyridin-3(1H)-one with thiophene-2-carboxaldehyde. The desired product was not isolated, only the starting material and the title compound were characterized after the reaction.

Ethyl 4-(hydroxymethyl)-6-methylnicotinate (I): Furo[3,4-c]pyridin-3(1H)-one (II) (110 mg,0.74 mmol, 1 eq.) was suspended in EtOH (15 ml) at 65°C. Thiophene-2-carboxaldehyde (III) (99 mg, 0.88 mmol) and triethylamine (18 mg,0.18 mmol) were then added and the reaction mixture stirred at 80°C for 6 days. After cooling to room temperature the reaction was quenched with 1M HCl and extracted with EtOAc. The organic layer was rinsed with water and dried over MgSO4. Removal of MgSO4 by filtration and evaporation of solvent under reduced pressure gave the crude product. This product was dissolved in dichloromethane and stored at 4°C to yield colorless crystals (25 mg, 17% yield) which were isolated by filtration and identified as the title compound. 1H NMR (400 MHz, CD3)2SO, 298 K) δ 8.83 (s, 1 H), 7.03 (s, 1 H), 5.43 (s, 1 H), 4.83 (br s, 2 H), 4.30 (q, J = 7.1 Hz, 2 H), 2.54 (s, 3 H), 1.32 (t, J = 7.1 Hz, 3 H). LCMS (APCI+) calcd for C10H13NO3 195 (MH+), found 196.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [O—H 0.82 Å, C—H 0.93–0.97 Å), with Uiso(H) = 1.5 times Ueq(O) and Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitary spheres.
[Figure 2] Fig. 2. Illustration of the arrangement of the complex (I) in the crystal along the a axis showing pyridine N···H—O hydrogen bonding arrangement.
[Figure 3] Fig. 3. Illustration of the arrangement of the complex (I) in the crystal along the a axis showing stacking of hydrogen bonded chains.
Ethyl 4-hydroxymethyl-2-methylpyridine-5-carboxylate top
Crystal data top
C10H13NO3F(000) = 416
Mr = 195.21Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4998 (2) ÅCell parameters from 4149 reflections
b = 15.4499 (8) Åθ = 2.0–26.3°
c = 14.2036 (7) ŵ = 0.10 mm1
β = 96.417 (1)°T = 87 K
V = 981.27 (8) Å3Needle, colourless
Z = 40.32 × 0.18 × 0.12 mm
Data collection top
Siemens SMART CCD
diffractometer
1786 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 26.3°, θmin = 2.0°
Area–detector ω scansh = 55
5759 measured reflectionsk = 1917
1987 independent reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.7105P]
where P = (Fo2 + 2Fc2)/3
1987 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H13NO3V = 981.27 (8) Å3
Mr = 195.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4998 (2) ŵ = 0.10 mm1
b = 15.4499 (8) ÅT = 87 K
c = 14.2036 (7) Å0.32 × 0.18 × 0.12 mm
β = 96.417 (1)°
Data collection top
Siemens SMART CCD
diffractometer
1786 reflections with I > 2σ(I)
5759 measured reflectionsRint = 0.081
1987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
1987 reflectionsΔρmin = 0.28 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4226 (3)0.73560 (9)0.54034 (9)0.0197 (3)
O10.7485 (3)0.96228 (7)0.64708 (8)0.0207 (3)
O20.5468 (3)0.95300 (8)0.78490 (8)0.0255 (3)
O30.0290 (3)0.75164 (8)0.84444 (8)0.0215 (3)
H30.05660.76060.89970.032*
C10.5219 (4)0.81023 (11)0.58079 (11)0.0184 (4)
H10.64160.84530.54740.022*
C20.4576 (3)0.83885 (10)0.66979 (11)0.0167 (3)
C30.2720 (3)0.78652 (11)0.72042 (10)0.0167 (3)
C40.1707 (4)0.70920 (11)0.67810 (11)0.0189 (4)
H40.04800.67320.70920.023*
C50.2507 (4)0.68475 (11)0.58930 (11)0.0191 (4)
C60.1465 (5)0.60006 (12)0.54492 (12)0.0290 (4)
H6A0.06820.59870.53660.044*
H6B0.22040.55320.58540.044*
H6C0.22060.59420.48440.044*
C70.1868 (4)0.81091 (11)0.81720 (11)0.0184 (4)
H7A0.36290.80990.86330.022*
H7B0.10530.86910.81520.022*
C80.5846 (3)0.92273 (11)0.70790 (11)0.0184 (4)
C90.8760 (4)1.04629 (11)0.67761 (12)0.0218 (4)
H9A1.01371.03970.73480.026*
H9B0.71871.08600.69060.026*
C101.0378 (4)1.08024 (12)0.59824 (12)0.0242 (4)
H10A1.19361.04060.58640.036*
H10B1.12351.13570.61560.036*
H10C0.89941.08610.54210.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (7)0.0210 (7)0.0131 (6)0.0006 (5)0.0027 (5)0.0001 (5)
O10.0250 (6)0.0200 (6)0.0180 (6)0.0041 (5)0.0057 (5)0.0031 (5)
O20.0332 (7)0.0261 (7)0.0180 (6)0.0048 (5)0.0073 (5)0.0061 (5)
O30.0263 (6)0.0275 (6)0.0115 (5)0.0033 (5)0.0060 (5)0.0002 (5)
C10.0216 (8)0.0205 (8)0.0137 (7)0.0002 (6)0.0043 (6)0.0020 (6)
C20.0169 (7)0.0200 (8)0.0127 (7)0.0034 (6)0.0001 (6)0.0000 (6)
C30.0174 (7)0.0216 (8)0.0108 (7)0.0038 (6)0.0005 (6)0.0028 (6)
C40.0223 (8)0.0220 (8)0.0123 (7)0.0013 (6)0.0022 (6)0.0032 (6)
C50.0237 (8)0.0206 (8)0.0127 (7)0.0007 (6)0.0005 (6)0.0001 (6)
C60.0450 (11)0.0257 (9)0.0170 (8)0.0089 (8)0.0062 (7)0.0030 (7)
C70.0215 (8)0.0218 (8)0.0123 (7)0.0003 (6)0.0032 (6)0.0003 (6)
C80.0191 (7)0.0210 (8)0.0151 (7)0.0024 (6)0.0021 (6)0.0006 (6)
C90.0255 (8)0.0184 (8)0.0217 (8)0.0018 (6)0.0026 (7)0.0035 (6)
C100.0270 (8)0.0234 (9)0.0219 (8)0.0051 (7)0.0015 (7)0.0014 (7)
Geometric parameters (Å, º) top
N1—C11.342 (2)C4—H40.9300
N1—C51.349 (2)C5—C61.504 (2)
O1—C81.344 (2)C6—H6A0.9600
O1—C91.4649 (19)C6—H6B0.9600
O2—C81.219 (2)C6—H6C0.9600
O3—C71.420 (2)C7—H7A0.9700
O3—H30.8200C7—H7B0.9700
C1—C21.400 (2)C9—C101.503 (2)
C1—H10.9300C9—H9A0.9700
C2—C31.415 (2)C9—H9B0.9700
C2—C81.493 (2)C10—H10A0.9600
C3—C41.391 (2)C10—H10B0.9600
C3—C71.515 (2)C10—H10C0.9600
C4—C51.402 (2)
C1—N1—C5117.54 (14)H6B—C6—H6C109.5
C8—O1—C9115.95 (13)O3—C7—C3109.70 (13)
C7—O3—H3109.5O3—C7—H7A109.7
N1—C1—C2124.43 (15)C3—C7—H7A109.7
N1—C1—H1117.8O3—C7—H7B109.7
C2—C1—H1117.8C3—C7—H7B109.7
C1—C2—C3118.16 (15)H7A—C7—H7B108.2
C1—C2—C8119.48 (14)O2—C8—O1122.94 (15)
C3—C2—C8122.36 (14)O2—C8—C2124.91 (15)
C4—C3—C2117.04 (14)O1—C8—C2112.14 (13)
C4—C3—C7120.10 (14)O1—C9—C10107.08 (13)
C2—C3—C7122.86 (14)O1—C9—H9A110.3
C3—C4—C5121.03 (15)C10—C9—H9A110.3
C3—C4—H4119.5O1—C9—H9B110.3
C5—C4—H4119.5C10—C9—H9B110.3
N1—C5—C4121.78 (15)H9A—C9—H9B108.6
N1—C5—C6117.43 (14)C9—C10—H10A109.5
C4—C5—C6120.79 (15)C9—C10—H10B109.5
C5—C6—H6A109.5H10A—C10—H10B109.5
C5—C6—H6B109.5C9—C10—H10C109.5
H6A—C6—H6B109.5H10A—C10—H10C109.5
C5—C6—H6C109.5H10B—C10—H10C109.5
H6A—C6—H6C109.5
C5—N1—C1—C20.4 (2)C3—C4—C5—N11.5 (2)
N1—C1—C2—C30.9 (2)C3—C4—C5—C6178.53 (15)
N1—C1—C2—C8179.21 (14)C4—C3—C7—O38.1 (2)
C1—C2—C3—C41.0 (2)C2—C3—C7—O3172.83 (13)
C8—C2—C3—C4179.12 (14)C9—O1—C8—O21.5 (2)
C1—C2—C3—C7179.91 (14)C9—O1—C8—C2178.51 (12)
C8—C2—C3—C70.0 (2)C1—C2—C8—O2178.81 (16)
C2—C3—C4—C50.1 (2)C3—C2—C8—O21.3 (2)
C7—C3—C4—C5178.98 (14)C1—C2—C8—O11.2 (2)
C1—N1—C5—C41.6 (2)C3—C2—C8—O1178.66 (13)
C1—N1—C5—C6178.42 (15)C8—O1—C9—C10177.70 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.012.8227 (17)170
Symmetry code: (i) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H13NO3
Mr195.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)87
a, b, c (Å)4.4998 (2), 15.4499 (8), 14.2036 (7)
β (°) 96.417 (1)
V3)981.27 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.18 × 0.12
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5759, 1987, 1786
Rint0.081
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.02
No. of reflections1987
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.012.8227 (17)169.9
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by Auckland Division of the Cancer Society of New Zealand, UniServices and The University of Auckland Research Committee.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Dey, S., Fun, H.-K. & Chantrapromma, S. (2006). Acta Cryst. E62, o3225–o3227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, Y.-M., Dong, C.-C., Liu, S., Zhu, H.-J. & Wu, Y.-Z. (2006). Acta Cryst. E62, o2102–o2103.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds