organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,4aR,3S,8aR,9R,10R)-1,4-Di­allyl-2,3-di­phenyl­perhydro­quinoxaline

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
*Correspondence e-mail: hyye@seu.edu.cn

(Received 14 April 2008; accepted 21 April 2008; online 26 April 2008)

In the title compound, C26H32N2, the cyclo­hexane and piperazine rings each adopt a chair conformation. Both phenyl rings and the two propen-3-yl residues are in equatorial positions. There are no C—H⋯N hydrogen bonds nor ππ inter­actions between the aromatic rings. The absolute configuration was assigned with reference to the starting material.

Related literature

For an olefin–copper (I) complex with high anisotropy, see: Ye et al. (2007[Ye, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]). For examples of the structure of olefins, see: Bond & Davies (2001[Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1041-o1042.]); Presenti et al. (2001[Presenti, C., Bravo, P., Corradi, E., Frigerioe, M., Meille, S. V., Panzeri, W. & Viani, F. (2001). J. Org. Chem. 66, 5637-5640.]); Wang & Ye (2008[Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32N2

  • Mr = 372.54

  • Orthorhombic, P 21 21 21

  • a = 6.509 (4) Å

  • b = 17.437 (10) Å

  • c = 19.757 (12) Å

  • V = 2242 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 (2) K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.808, Tmax = 1.000 (expected range = 0.801–0.990)

  • 22256 measured reflections

  • 2923 independent reflections

  • 2452 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.154

  • S = 1.13

  • 2923 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported large anisotropy of an olefin copper (I) complex (Ye, et al., 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound (Fig. 1).

The distances of the C=C double bonds [C8-C9 1.284 (5)Å, C25-C26 1.235 (5)Å] are slightly shorter than those found in other olefin compounds (Bond et al., 2001; Presenti et al., 2001). This might be due to an increased thermal vibration of the terminal C atoms. The two phenyl and the two propen-3-yl residues are located in an equatorial postion. The cyclohexane ring and the piperazine ring adopt a chair conformation. The two aromatic rings are gauche to each other [torsion angle C11—C10—C17—C18 -58.0 (2)°]. The dihedral angle between the two aromatic rings is 50.66 (0.10)°.

Related literature top

For large anisotropy of an olefin copper (I) complex, see: Ye et al. (2007). For examples of the structure of olefins, see: Bond & Davies (2001); Presenti et al. (2001); Wang & Ye (2008).

Experimental top

(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang et al.(2008) (2.0 g, 6.9 mmol) was dissolved in methanol (30 ml) and NaBH4 (0.3 g) was added to the solution portionally. The mixture was stirred at room temperature for 3 h. The resulting solution was poured into ice water (200 mL), then extracted with dichlomethane (30 ml × 2). The organic phase was washed with saturated sodium chloride aqueous solution (20 mL) then dried with anhydrous sodium sulfate. After removing the solvent, the residue, potassium carbonate (3 g) and ethanol (20 mL) were placed to a 50 mL round bottom flask. After stirred for 15 min, a solution of allyl bromide (1.4 g, 11.5 mmol) in ethanol (10 mL) was added to the reaction mixture. The mixture was heated to reflux for ca 2 h until the starting material disappeared with TLC detection. The resulting solution was cooled and filtered off. The solvent was removed under reduced pressure to give a white semisolid product. The crude product was recrystallized by slowly evaporating an acetone solution to yield colorless block-like crystals.

Refinement top

All H atoms were found in a difference electron-density map. Nevertheless, they were placed at idealized positons and refined using a riding model with Cmethine—H = 0.98Å, Cmethylene—H = 0.97Å, Caryl—H =0.93Å, Cethylene—H =0.93Å, and UisoH = 1.2 UeqC. Due to the absence of significant anomalous scattering effects, 2187 Friedel pairs were merged. The absolute configuration was set according the starting material.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation of the title compound with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
(2S,4aR,3S,8aR,9R,10R)- 1,4-Diallyl-2,3-diphenylperhydroquinoxaline top
Crystal data top
C26H32N2F(000) = 808
Mr = 372.54Dx = 1.101 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15922 reflections
a = 6.509 (4) Åθ = 3.3–27.5°
b = 17.437 (10) ŵ = 0.06 mm1
c = 19.757 (12) ÅT = 293 K
V = 2242 (2) Å3Block, colorless
Z = 40.35 × 0.15 × 0.15 mm
Data collection top
Rigaku SCXmini
diffractometer
2923 independent reflections
Radiation source: fine-focus sealed tube2452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2222
Tmin = 0.809, Tmax = 1.000l = 2525
22256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2312P]
where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C26H32N2V = 2242 (2) Å3
Mr = 372.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.509 (4) ŵ = 0.06 mm1
b = 17.437 (10) ÅT = 293 K
c = 19.757 (12) Å0.35 × 0.15 × 0.15 mm
Data collection top
Rigaku SCXmini
diffractometer
2923 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2452 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.040
22256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.13Δρmax = 0.15 e Å3
2923 reflectionsΔρmin = 0.13 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5826 (4)0.80378 (13)0.84675 (11)0.0506 (5)
H1A0.72330.82380.84630.061*
C20.5523 (5)0.75694 (16)0.91185 (12)0.0647 (7)
H2A0.41770.73310.91100.078*
H2B0.65440.71650.91370.078*
C30.5705 (6)0.80629 (17)0.97458 (13)0.0761 (8)
H3A0.54170.77541.01430.091*
H3B0.71010.82530.97840.091*
C40.4241 (6)0.87304 (17)0.97238 (12)0.0745 (8)
H4A0.44460.90491.01200.089*
H4B0.28390.85420.97320.089*
C50.4569 (5)0.92060 (15)0.90914 (11)0.0643 (7)
H5A0.59320.94310.91020.077*
H5B0.35760.96210.90810.077*
C60.4339 (4)0.87160 (12)0.84510 (11)0.0486 (5)
H6A0.29340.85150.84360.058*
C70.3422 (5)0.98753 (13)0.78078 (14)0.0653 (7)
H7A0.36721.01320.73800.078*
H7B0.38791.02160.81650.078*
C80.1147 (5)0.97599 (18)0.78826 (18)0.0834 (9)
H8A0.05530.93670.76310.100*
C90.0048 (7)1.0156 (3)0.8263 (2)0.1171 (14)
H9A0.04831.05540.85230.141*
H9B0.14441.00450.82790.141*
C100.4402 (4)0.86967 (12)0.72229 (11)0.0483 (5)
H10A0.29820.85090.72180.058*
C110.4779 (4)0.91552 (13)0.65788 (11)0.0533 (6)
C120.3334 (5)0.91742 (15)0.60669 (13)0.0693 (8)
H12A0.20950.89150.61200.083*
C130.3722 (7)0.95790 (18)0.54713 (15)0.0914 (11)
H13A0.27430.95850.51290.110*
C140.5517 (7)0.9965 (2)0.53880 (15)0.0981 (12)
H14A0.57651.02330.49900.118*
C150.6952 (6)0.9957 (2)0.58882 (17)0.0956 (11)
H15A0.81851.02190.58300.115*
C160.6586 (5)0.95579 (16)0.64889 (14)0.0734 (8)
H16A0.75670.95630.68310.088*
C170.5854 (4)0.80049 (12)0.72363 (11)0.0494 (5)
H17A0.72740.81920.72310.059*
C180.5511 (4)0.75131 (14)0.66111 (11)0.0541 (6)
C190.6996 (5)0.74603 (15)0.61113 (13)0.0677 (7)
H19A0.82350.77190.61650.081*
C200.6668 (6)0.70288 (18)0.55319 (15)0.0857 (10)
H20A0.76780.70020.52000.103*
C210.4855 (6)0.66430 (17)0.54495 (15)0.0826 (10)
H21A0.46370.63520.50620.099*
C220.3358 (6)0.66848 (16)0.59373 (14)0.0763 (8)
H22A0.21190.64280.58780.092*
C230.3702 (4)0.71126 (15)0.65195 (13)0.0642 (7)
H23A0.26960.71290.68530.077*
C240.6823 (5)0.68533 (14)0.78648 (14)0.0677 (7)
H24A0.65750.65760.74470.081*
H24B0.63730.65280.82340.081*
C250.9103 (5)0.6977 (2)0.79341 (19)0.0882 (10)
H25A0.96480.73970.77050.106*
C261.0331 (7)0.6584 (3)0.8261 (2)0.1236 (16)
H26A0.98700.61580.84990.148*
H26B1.17160.67140.82690.148*
N10.4696 (3)0.91737 (10)0.78298 (9)0.0510 (4)
N20.5531 (3)0.75566 (10)0.78624 (9)0.0512 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (13)0.0487 (11)0.0453 (11)0.0009 (11)0.0019 (11)0.0009 (9)
C20.0857 (18)0.0610 (15)0.0474 (12)0.0109 (15)0.0022 (13)0.0088 (11)
C30.102 (2)0.0804 (18)0.0453 (13)0.0067 (19)0.0094 (15)0.0070 (13)
C40.108 (2)0.0775 (17)0.0380 (11)0.0065 (18)0.0012 (14)0.0055 (12)
C50.0890 (19)0.0562 (14)0.0477 (13)0.0034 (14)0.0046 (13)0.0067 (11)
C60.0582 (13)0.0467 (11)0.0409 (11)0.0014 (11)0.0041 (10)0.0008 (9)
C70.096 (2)0.0444 (11)0.0551 (13)0.0100 (12)0.0002 (15)0.0012 (11)
C80.089 (2)0.0738 (17)0.088 (2)0.0259 (17)0.0153 (19)0.0051 (17)
C90.103 (3)0.118 (3)0.130 (3)0.024 (3)0.021 (3)0.012 (3)
C100.0579 (13)0.0453 (11)0.0419 (11)0.0045 (10)0.0003 (11)0.0008 (9)
C110.0703 (15)0.0473 (12)0.0422 (11)0.0025 (12)0.0015 (11)0.0024 (9)
C120.088 (2)0.0602 (15)0.0600 (15)0.0094 (15)0.0194 (14)0.0080 (12)
C130.138 (3)0.0806 (19)0.0553 (16)0.014 (2)0.0286 (19)0.0168 (15)
C140.155 (4)0.085 (2)0.0537 (16)0.026 (3)0.002 (2)0.0203 (16)
C150.113 (3)0.098 (2)0.075 (2)0.038 (2)0.012 (2)0.0172 (18)
C160.0829 (19)0.0798 (18)0.0574 (14)0.0230 (16)0.0063 (15)0.0153 (14)
C170.0553 (12)0.0473 (11)0.0457 (11)0.0027 (10)0.0035 (11)0.0010 (9)
C180.0682 (15)0.0476 (12)0.0464 (12)0.0014 (12)0.0053 (11)0.0016 (10)
C190.0761 (18)0.0638 (15)0.0630 (15)0.0032 (15)0.0167 (13)0.0039 (13)
C200.113 (3)0.085 (2)0.0590 (16)0.006 (2)0.0291 (18)0.0160 (15)
C210.119 (3)0.0755 (19)0.0527 (15)0.002 (2)0.0028 (17)0.0179 (14)
C220.090 (2)0.0706 (17)0.0681 (17)0.0135 (16)0.0041 (17)0.0106 (14)
C230.0728 (16)0.0665 (15)0.0534 (13)0.0082 (14)0.0096 (13)0.0093 (12)
C240.097 (2)0.0477 (12)0.0581 (14)0.0146 (13)0.0004 (16)0.0027 (11)
C250.084 (2)0.0784 (19)0.102 (2)0.0273 (18)0.0133 (19)0.0080 (19)
C260.107 (3)0.137 (4)0.127 (4)0.027 (3)0.026 (3)0.007 (3)
N10.0688 (12)0.0407 (9)0.0434 (9)0.0014 (8)0.0006 (10)0.0024 (8)
N20.0653 (11)0.0411 (9)0.0474 (10)0.0034 (8)0.0014 (10)0.0016 (8)
Geometric parameters (Å, º) top
C1—N21.473 (3)C12—C131.395 (4)
C1—C61.528 (3)C12—H12A0.9300
C1—C21.536 (3)C13—C141.358 (6)
C1—H1A0.9800C13—H13A0.9300
C2—C31.514 (4)C14—C151.360 (5)
C2—H2A0.9700C14—H14A0.9300
C2—H2B0.9700C15—C161.396 (4)
C3—C41.505 (4)C15—H15A0.9300
C3—H3A0.9700C16—H16A0.9300
C3—H3B0.9700C17—N21.478 (3)
C4—C51.515 (4)C17—C181.520 (3)
C4—H4A0.9700C17—H17A0.9800
C4—H4B0.9700C18—C231.381 (4)
C5—C61.534 (3)C18—C191.385 (4)
C5—H5A0.9700C19—C201.386 (4)
C5—H5B0.9700C19—H19A0.9300
C6—N11.482 (3)C20—C211.368 (5)
C6—H6A0.9800C20—H20A0.9300
C7—N11.479 (3)C21—C221.373 (5)
C7—C81.501 (5)C21—H21A0.9300
C7—H7A0.9700C22—C231.389 (4)
C7—H7B0.9700C22—H22A0.9300
C8—C91.284 (5)C23—H23A0.9300
C8—H8A0.9300C24—N21.487 (3)
C9—H9A0.9300C24—C251.506 (5)
C9—H9B0.9300C24—H24A0.9700
C10—N11.472 (3)C24—H24B0.9700
C10—C111.523 (3)C25—C261.235 (5)
C10—C171.533 (3)C25—H25A0.9300
C10—H10A0.9800C26—H26A0.9300
C11—C121.381 (4)C26—H26B0.9300
C11—C161.381 (4)
N2—C1—C6109.94 (18)C11—C12—C13120.4 (3)
N2—C1—C2111.09 (18)C11—C12—H12A119.8
C6—C1—C2110.4 (2)C13—C12—H12A119.8
N2—C1—H1A108.5C14—C13—C12120.5 (3)
C6—C1—H1A108.5C14—C13—H13A119.7
C2—C1—H1A108.5C12—C13—H13A119.7
C3—C2—C1111.9 (2)C13—C14—C15119.9 (3)
C3—C2—H2A109.2C13—C14—H14A120.1
C1—C2—H2A109.2C15—C14—H14A120.1
C3—C2—H2B109.2C14—C15—C16120.3 (3)
C1—C2—H2B109.2C14—C15—H15A119.8
H2A—C2—H2B107.9C16—C15—H15A119.8
C4—C3—C2111.5 (2)C11—C16—C15120.5 (3)
C4—C3—H3A109.3C11—C16—H16A119.7
C2—C3—H3A109.3C15—C16—H16A119.7
C4—C3—H3B109.3N2—C17—C18111.13 (17)
C2—C3—H3B109.3N2—C17—C10110.05 (18)
H3A—C3—H3B108.0C18—C17—C10109.82 (19)
C3—C4—C5111.0 (2)N2—C17—H17A108.6
C3—C4—H4A109.4C18—C17—H17A108.6
C5—C4—H4A109.4C10—C17—H17A108.6
C3—C4—H4B109.4C23—C18—C19117.9 (2)
C5—C4—H4B109.4C23—C18—C17121.1 (2)
H4A—C4—H4B108.0C19—C18—C17120.9 (2)
C4—C5—C6111.2 (2)C18—C19—C20121.2 (3)
C4—C5—H5A109.4C18—C19—H19A119.4
C6—C5—H5A109.4C20—C19—H19A119.4
C4—C5—H5B109.4C21—C20—C19119.9 (3)
C6—C5—H5B109.4C21—C20—H20A120.1
H5A—C5—H5B108.0C19—C20—H20A120.1
N1—C6—C1109.56 (19)C20—C21—C22120.2 (3)
N1—C6—C5111.58 (19)C20—C21—H21A119.9
C1—C6—C5110.58 (19)C22—C21—H21A119.9
N1—C6—H6A108.3C21—C22—C23119.7 (3)
C1—C6—H6A108.3C21—C22—H22A120.2
C5—C6—H6A108.3C23—C22—H22A120.2
N1—C7—C8116.1 (2)C18—C23—C22121.2 (3)
N1—C7—H7A108.3C18—C23—H23A119.4
C8—C7—H7A108.3C22—C23—H23A119.4
N1—C7—H7B108.3N2—C24—C25116.1 (2)
C8—C7—H7B108.3N2—C24—H24A108.3
H7A—C7—H7B107.4C25—C24—H24A108.3
C9—C8—C7125.7 (4)N2—C24—H24B108.3
C9—C8—H8A117.2C25—C24—H24B108.3
C7—C8—H8A117.2H24A—C24—H24B107.4
C8—C9—H9A120.0C26—C25—C24127.2 (4)
C8—C9—H9B120.0C26—C25—H25A116.4
H9A—C9—H9B120.0C24—C25—H25A116.4
N1—C10—C11111.29 (17)C25—C26—H26A120.0
N1—C10—C17110.49 (18)C25—C26—H26B120.0
C11—C10—C17109.16 (18)H26A—C26—H26B120.0
N1—C10—H10A108.6C10—N1—C7111.74 (19)
C11—C10—H10A108.6C10—N1—C6110.48 (16)
C17—C10—H10A108.6C7—N1—C6112.43 (19)
C12—C11—C16118.3 (2)C1—N2—C17111.06 (16)
C12—C11—C10121.0 (2)C1—N2—C24113.17 (19)
C16—C11—C10120.8 (2)C17—N2—C24110.99 (19)
C11—C10—C17—C1858.0 (2)

Experimental details

Crystal data
Chemical formulaC26H32N2
Mr372.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.509 (4), 17.437 (10), 19.757 (12)
V3)2242 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22256, 2923, 2452
Rint0.040
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.154, 1.13
No. of reflections2923
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationBond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1041–o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPresenti, C., Bravo, P., Corradi, E., Frigerioe, M., Meille, S. V., Panzeri, W. & Viani, F. (2001). J. Org. Chem. 66, 5637–5640.  Web of Science PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds