metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ4-benzene-1,4-di­carboxyl­ato)(μ4-succinato)diterbium(III)]

aDepartment of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China
*Correspondence e-mail: jlschy@126.com

(Received 15 April 2008; accepted 21 April 2008; online 30 April 2008)

In the title compound, [Tb2(C4H4O4)(C8H4O4)2]n, the coord­in­ation around each Tb atom is distorted square-anti­prismatic. The benzene-1,4-dicarboxyl­ate and succinate anions bridge the anti­prisms, forming a three-dimensional network. The succinate anion is located on a centre of inversion. The structure is isomorphous with the Dy, Gd, Er and Nd complexes.

Related literature

For isomorphous structures, see: Wang & Li (2005[Wang, C.-X. & Li, Z.-F. (2005). Acta Cryst. E61, m2212-m2213.]) He et al. (2006[He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m997-m998.]); Li & Wang (2005[Li, Z.-F. & Wang, C.-X. (2005). Acta Cryst. E61, m2689-m2690.]); Li et al. (2006[Li, Z.-F., Wang, C.-X., Li, Y., Cai, D.-J. & Xiao, Y.-J. (2006). Acta Cryst. E62, m251-m252.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C4H4O4)(C8H4O4)2]

  • Mr = 381.07

  • Orthorhombic, P b c a

  • a = 13.948 (3) Å

  • b = 6.8724 (14) Å

  • c = 21.844 (4) Å

  • V = 2093.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.77 mm−1

  • T = 293 (2) K

  • 0.29 × 0.27 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.121, Tmax = 0.257

  • 18548 measured reflections

  • 2376 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.041

  • S = 1.07

  • 2376 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lanthanide complexes usually exhibit interesting framework structures and intense luminescence. In all types of rare-earth compounds, carboxylate anions with aromatic rings are widely used in the construction of high-dimensional lanthanide coordination polymers because these anions are able to act as bridging ligands in various ligating modes. However, rare-earth coordination polymers with mixed aromatic and fatty carboxylates are rarely studied (Wang & Li, 2005). In this paper, we present a new mixed carboxylate complex, namely [Tb2(1,4-bdc)2(suc)]n (I), where 1,4-bdc=benzene-1,4-dicarboxylate and suc= succinate.

In (I), each Tb(III) center is coordinated by eight O atoms from 1,4-bdc and suc anions in a distorted square antiprism (Fig. 1). Each carboxylate moiety of the 1,4-bdc bridges two Tb(III) atoms, whereas each carboxylate group of suc links four Tb(III) atoms. In these modes, the central Tb(III) atoms are linked by 1,4-bdc and suc ligands, resulting in a rare three-dimensional framework structure (Fig. 2). The succinate anion is located on a centre of inversion. The structure of the title compound is isomorphous with the Dy (Li & Wang, 2005) Gd (Wang & Li, 2005), Er (He et al., 2006) and the Nd (Li et al., 2006) complex.

Related literature top

For isomorphous structures, see: Wang & Li (2005) He et al. (2006); Li & Wang (2005); Li et al. (2006).

Experimental top

A mixture of 1,4-H2bdc (0.5 mmol), H2suc (0.5 mmol), NaOH (1 mmol) and TbCl3.6H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 185°C for ten days, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement top

H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 0.5 - x, y - 1/2, z; (ii) 0.5 - x, -y, z + 1/2; (iii) x + 1/2, y, 0.5 - z; (iv) x, y - 1, z; (v) 1 - x, 1 - y, 1 - z.
Poly[bis(µ4-benzene-1,4-dicarboxylato)(µ4-succinato)diterbium(III)] top
Crystal data top
[Tb2(C4H4O4)(C8H4O4)2]F(000) = 1432
Mr = 381.07Dx = 2.418 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15551 reflections
a = 13.948 (3) Åθ = 3.0–27.5°
b = 6.8724 (14) ŵ = 6.77 mm1
c = 21.844 (4) ÅT = 293 K
V = 2093.9 (7) Å3Block, colorless
Z = 80.29 × 0.27 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2376 independent reflections
Radiation source: rotating anode2135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.121, Tmax = 0.257l = 2828
18548 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0163P)2 + 4.6062P]
where P = (Fo2 + 2Fc2)/3
2376 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Tb2(C4H4O4)(C8H4O4)2]V = 2093.9 (7) Å3
Mr = 381.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.948 (3) ŵ = 6.77 mm1
b = 6.8724 (14) ÅT = 293 K
c = 21.844 (4) Å0.29 × 0.27 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2376 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2135 reflections with I > 2σ(I)
Tmin = 0.121, Tmax = 0.257Rint = 0.027
18548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.07Δρmax = 1.10 e Å3
2376 reflectionsΔρmin = 0.44 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1795 (2)0.2005 (4)0.33571 (13)0.0204 (6)
C20.1524 (2)0.1513 (4)0.27097 (13)0.0187 (6)
C30.0612 (2)0.1987 (5)0.24969 (14)0.0253 (7)
H30.01700.25630.27590.030*
C40.0363 (2)0.1603 (5)0.18965 (13)0.0231 (7)
H40.02470.19190.17560.028*
C50.1021 (2)0.0744 (4)0.15012 (12)0.0148 (5)
C60.1935 (2)0.0297 (5)0.17129 (14)0.0223 (6)
H60.23820.02530.14490.027*
C70.2183 (2)0.0667 (5)0.23162 (14)0.0242 (7)
H70.27920.03480.24570.029*
C80.3754 (2)0.5305 (4)0.46896 (15)0.0202 (6)
C90.4829 (2)0.5423 (5)0.46975 (14)0.0238 (7)
H9A0.50340.67660.46600.029*
H9B0.50950.46880.43580.029*
C100.0752 (2)0.0328 (4)0.08488 (12)0.0126 (5)
O10.25854 (17)0.1379 (4)0.35567 (9)0.0256 (5)
O20.12255 (18)0.3032 (3)0.36600 (10)0.0274 (5)
O30.33421 (15)0.3741 (3)0.45414 (10)0.0200 (4)
O40.32547 (15)0.6772 (3)0.48303 (9)0.0178 (4)
O50.13755 (15)0.0398 (3)0.05016 (9)0.0173 (4)
O60.00860 (15)0.0752 (3)0.06791 (9)0.0184 (4)
Tb10.331426 (9)0.019240 (18)0.445275 (6)0.01157 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0303 (17)0.0194 (14)0.0114 (13)0.0055 (12)0.0067 (12)0.0008 (12)
C20.0266 (16)0.0182 (14)0.0113 (13)0.0008 (12)0.0074 (12)0.0024 (11)
C30.0226 (16)0.0388 (19)0.0146 (14)0.0067 (13)0.0006 (12)0.0092 (14)
C40.0151 (14)0.0381 (18)0.0162 (14)0.0072 (13)0.0058 (12)0.0084 (13)
C50.0169 (13)0.0180 (13)0.0094 (12)0.0011 (11)0.0012 (10)0.0023 (11)
C60.0173 (14)0.0318 (17)0.0179 (15)0.0030 (12)0.0059 (11)0.0072 (13)
C70.0241 (16)0.0305 (17)0.0180 (14)0.0078 (13)0.0104 (12)0.0039 (13)
C80.0167 (14)0.0154 (14)0.0285 (16)0.0013 (11)0.0058 (12)0.0014 (12)
C90.0238 (16)0.0236 (16)0.0240 (16)0.0028 (12)0.0007 (13)0.0018 (13)
C100.0161 (13)0.0135 (13)0.0082 (12)0.0042 (10)0.0014 (10)0.0017 (10)
O10.0288 (12)0.0363 (13)0.0116 (9)0.0006 (10)0.0090 (9)0.0023 (9)
O20.0365 (14)0.0298 (12)0.0159 (10)0.0018 (10)0.0071 (10)0.0108 (10)
O30.0136 (10)0.0126 (9)0.0338 (12)0.0003 (8)0.0069 (9)0.0015 (9)
O40.0175 (10)0.0150 (9)0.0209 (10)0.0014 (8)0.0025 (8)0.0017 (8)
O50.0184 (10)0.0253 (11)0.0083 (9)0.0039 (8)0.0010 (7)0.0000 (8)
O60.0134 (10)0.0294 (11)0.0123 (9)0.0010 (9)0.0036 (8)0.0009 (8)
Tb10.01146 (7)0.01367 (7)0.00960 (7)0.00056 (5)0.00011 (5)0.00135 (5)
Geometric parameters (Å, º) top
C1—O21.252 (4)C9—H9A0.9700
C1—O11.261 (4)C9—H9B0.9700
C1—C21.503 (4)C10—O51.257 (3)
C2—C71.386 (4)C10—O61.260 (3)
C2—C31.393 (4)O1—Tb12.352 (2)
C3—C41.382 (4)O2—Tb1i2.370 (2)
C3—H30.9300O3—Tb12.447 (2)
C4—C51.391 (4)O3—Tb1i2.524 (2)
C4—H40.9300O4—Tb1iii2.492 (2)
C5—C61.392 (4)O4—Tb1i2.578 (2)
C5—C101.501 (4)O5—Tb1iv2.3359 (19)
C6—C71.386 (4)O6—Tb1v2.283 (2)
C6—H60.9300Tb1—O6vi2.283 (2)
C7—H70.9300Tb1—O5vii2.3359 (19)
C8—O31.261 (4)Tb1—O2viii2.370 (2)
C8—O41.263 (4)Tb1—O4ix2.492 (2)
C8—C91.501 (4)Tb1—O3viii2.524 (2)
C8—Tb1i2.932 (3)Tb1—O4viii2.578 (2)
C9—C9ii1.521 (6)Tb1—C8viii2.932 (3)
O2—C1—O1124.4 (3)C8—O4—Tb1iii130.8 (2)
O2—C1—C2117.7 (3)C8—O4—Tb1i93.10 (17)
O1—C1—C2117.9 (3)Tb1iii—O4—Tb1i108.64 (7)
C7—C2—C3119.8 (3)C10—O5—Tb1iv134.11 (18)
C7—C2—C1120.7 (3)C10—O6—Tb1v154.76 (19)
C3—C2—C1119.4 (3)O6vi—Tb1—O5vii86.13 (7)
C4—C3—C2120.1 (3)O6vi—Tb1—O1105.02 (8)
C4—C3—H3120.0O5vii—Tb1—O1151.11 (8)
C2—C3—H3120.0O6vi—Tb1—O2viii75.44 (8)
C3—C4—C5120.3 (3)O5vii—Tb1—O2viii134.79 (8)
C3—C4—H4119.8O1—Tb1—O2viii74.10 (9)
C5—C4—H4119.8O6vi—Tb1—O380.00 (7)
C4—C5—C6119.5 (3)O5vii—Tb1—O381.91 (7)
C4—C5—C10120.4 (3)O1—Tb1—O374.17 (8)
C6—C5—C10120.2 (3)O2viii—Tb1—O3132.69 (8)
C7—C6—C5120.3 (3)O6vi—Tb1—O4ix103.49 (7)
C7—C6—H6119.9O5vii—Tb1—O4ix74.84 (7)
C5—C6—H6119.9O1—Tb1—O4ix126.02 (8)
C6—C7—C2120.1 (3)O2viii—Tb1—O4ix70.12 (8)
C6—C7—H7120.0O3—Tb1—O4ix156.11 (7)
C2—C7—H7120.0O6vi—Tb1—O3viii166.21 (7)
O3—C8—O4119.4 (3)O5vii—Tb1—O3viii96.79 (7)
O3—C8—C9120.2 (3)O1—Tb1—O3viii78.76 (8)
O4—C8—C9120.3 (3)O2viii—Tb1—O3viii93.23 (8)
O3—C8—Tb1i58.93 (15)O3—Tb1—O3viii113.73 (5)
O4—C8—Tb1i61.42 (15)O4ix—Tb1—O3viii64.62 (7)
C9—C8—Tb1i170.4 (2)O6vi—Tb1—O4viii143.04 (7)
C8—C9—C9ii107.6 (3)O5vii—Tb1—O4viii79.52 (7)
C8—C9—H9A110.2O1—Tb1—O4viii75.72 (8)
C9ii—C9—H9A110.2O2viii—Tb1—O4viii136.68 (8)
C8—C9—H9B110.2O3—Tb1—O4viii64.43 (7)
C9ii—C9—H9B110.2O4ix—Tb1—O4viii105.25 (6)
H9A—C9—H9B108.5O3viii—Tb1—O4viii50.58 (6)
O5—C10—O6123.8 (2)O6vi—Tb1—C8viii168.43 (8)
O5—C10—C5118.4 (2)O5vii—Tb1—C8viii90.44 (8)
O6—C10—C5117.8 (2)O1—Tb1—C8viii73.28 (9)
C1—O1—Tb1141.6 (2)O2viii—Tb1—C8viii114.33 (9)
C1—O2—Tb1i124.6 (2)O3—Tb1—C8viii88.58 (7)
C8—O3—Tb1151.30 (19)O4ix—Tb1—C8viii86.20 (8)
C8—O3—Tb1i95.72 (17)O3viii—Tb1—C8viii25.35 (7)
Tb1—O3—Tb1i111.92 (8)O4viii—Tb1—C8viii25.48 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1/2, y, z1/2; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y1/2, z; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Tb2(C4H4O4)(C8H4O4)2]
Mr381.07
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.948 (3), 6.8724 (14), 21.844 (4)
V3)2093.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)6.77
Crystal size (mm)0.29 × 0.27 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.121, 0.257
No. of measured, independent and
observed [I > 2σ(I)] reflections
18548, 2376, 2135
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.07
No. of reflections2376
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.44

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

The author thanks the Beihua University for supporting this work.

References

First citationHe, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m997–m998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Z.-F. & Wang, C.-X. (2005). Acta Cryst. E61, m2689–m2690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-F., Wang, C.-X., Li, Y., Cai, D.-J. & Xiao, Y.-J. (2006). Acta Cryst. E62, m251–m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-X. & Li, Z.-F. (2005). Acta Cryst. E61, m2212–m2213.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds