organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[N′-(2,2-di­methyl­propionyl)thio­ureido]cyclo­hexa­ne

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 20 April 2008; accepted 22 April 2008; online 30 April 2008)

In the title compound, C18H32N4O2S2, the dihedral angle between the two thio­urea groups is 78.55 (7)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O hydrogen bonds and the crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For related crystal structures, see: Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H32N4O2S2

  • Mr = 400.60

  • Monoclinic, P 21 /c

  • a = 10.960 (2) Å

  • b = 19.065 (4) Å

  • c = 10.378 (2) Å

  • β = 96.112 (4)°

  • V = 2156.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.48 × 0.41 × 0.37 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.908

  • 10928 measured reflections

  • 3779 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.07

  • 3779 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.97 2.650 (2) 135
N3—H3⋯O2 0.86 1.99 2.670 (2) 135
N1—H1⋯O2i 0.86 2.25 3.078 (2) 161
C1—H1B⋯O2i 0.96 2.54 3.462 (3) 161
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), is a propionylthiourea derivatives and analogous to 1,2-bis(N'-benzoylthioureido)benzene, (Thiam et al., 2008), except that the benzene and benzoyl groups are replaced by cyclohexane and 2,2-dimethylpropionyl group respectively (Fig. 1). The bond lengths and angles are in normal ranges (Allen et al., 1987). The thiourea fragments [S1/N1/N2/C4 and S2/N3/N4/C11] are all planar, with a maximum deviation of 0.024 (2)Å from least-sqares plane for atom N2 and the dihedral angles between them is 78.55 (7)°.

There are two intramolecular hydrogen bonds, N2—H2···O1 and N3—H3···O2 (Table 1), forming two pseudo-six-membered rings (O1···H2—N2—C4—N1—C3—O1 and O2···H3—N3—C11—N4—C12—O2). In the crystal structure, the molecules are linked by intermolecular interactions, N—H···O and C—H···O forming centrosymmetric dimers (Fig. 2).

Related literature top

For related crystal structures, see: Thiam et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirring acetone solution (75 ml) of pivaloyl chloride (5.0 g, 0.04 mol) and ammonium thiocyanate (3.15 g, 0.04 mol), 1,2-diaminocyclohexane (2.37 g, 0.02 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93–0.97Å and N—H = 0.86Å with Uiso(H)= 1.2 (CH2 and NH) or 1.5Ueq(C)(CH3). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. : Packing diagram of the title compound viewed down the b axis. The dashed lines denote hydrogen bonds.
1,2-Bis[N'-(2,2-dimethylpropionyl)thioureido]cyclohexane top
Crystal data top
C18H32N4O2S2F(000) = 864
Mr = 400.60Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 982 reflections
a = 10.960 (2) Åθ = 1.9–25.0°
b = 19.065 (4) ŵ = 0.27 mm1
c = 10.378 (2) ÅT = 298 K
β = 96.112 (4)°Block, colourless
V = 2156.1 (8) Å30.48 × 0.41 × 0.37 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3779 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 913
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 2222
Tmin = 0.883, Tmax = 0.908l = 1211
10928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.3145P]
where P = (Fo2 + 2Fc2)/3
3779 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H32N4O2S2V = 2156.1 (8) Å3
Mr = 400.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.960 (2) ŵ = 0.27 mm1
b = 19.065 (4) ÅT = 298 K
c = 10.378 (2) Å0.48 × 0.41 × 0.37 mm
β = 96.112 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2828 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.908Rint = 0.026
10928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3779 reflectionsΔρmin = 0.22 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12804 (6)0.05301 (3)0.07986 (6)0.0544 (2)
S20.03271 (6)0.10826 (4)0.56450 (6)0.0689 (2)
O10.26724 (16)0.05371 (8)0.29928 (15)0.0566 (4)
O20.21983 (13)0.10785 (8)0.19001 (14)0.0464 (4)
N10.20717 (16)0.04742 (8)0.08323 (17)0.0424 (4)
H10.19960.07210.01350.051*
N20.18658 (16)0.06134 (8)0.17475 (17)0.0426 (4)
H20.20230.03970.24730.051*
N30.00442 (15)0.13012 (9)0.31031 (18)0.0435 (4)
H30.04260.12730.23870.052*
N40.15887 (16)0.08040 (10)0.39865 (18)0.0481 (5)
H40.18400.06170.46640.058*
C10.1676 (3)0.19515 (13)0.0914 (3)0.0723 (8)
H1A0.17710.24520.09400.108*
H1B0.16850.17900.00390.108*
H1C0.09100.18270.12220.108*
C20.2729 (2)0.16111 (11)0.1774 (2)0.0468 (5)
C30.24848 (19)0.08288 (11)0.1939 (2)0.0415 (5)
C40.17546 (18)0.02355 (11)0.0674 (2)0.0396 (5)
C50.17396 (18)0.13730 (10)0.1781 (2)0.0391 (5)
H50.11380.15160.10630.047*
C60.2965 (2)0.17181 (11)0.1603 (2)0.0462 (5)
H6A0.35910.15290.22390.055*
H6B0.31900.16030.07490.055*
C70.2932 (2)0.25092 (11)0.1746 (2)0.0523 (6)
H7A0.37430.27010.16820.063*
H7B0.23750.27080.10530.063*
C80.2512 (2)0.27047 (12)0.3043 (2)0.0564 (6)
H8A0.31000.25340.37360.068*
H8B0.24690.32110.31150.068*
C90.1265 (2)0.23904 (11)0.3176 (2)0.0480 (6)
H9A0.06710.25860.25130.058*
H9B0.10140.25160.40140.058*
C100.12704 (18)0.15951 (10)0.3048 (2)0.0396 (5)
H100.18190.14010.37670.048*
C110.03989 (18)0.10766 (11)0.4159 (2)0.0421 (5)
C120.24141 (18)0.07907 (11)0.2897 (2)0.0387 (5)
C130.36266 (19)0.04254 (11)0.3039 (2)0.0436 (5)
C140.3419 (2)0.03052 (14)0.3627 (3)0.0676 (8)
H14A0.41960.05330.36620.101*
H14B0.30060.02650.44870.101*
H14C0.29260.05770.31010.101*
C150.3909 (2)0.16947 (14)0.1128 (3)0.0769 (9)
H15A0.45730.14690.16470.115*
H15B0.38050.14840.02830.115*
H15C0.40910.21840.10470.115*
C160.2847 (4)0.19545 (14)0.3097 (3)0.1025 (13)
H16A0.35350.17570.36240.154*
H16B0.29710.24500.30040.154*
H16C0.21120.18750.35020.154*
C170.4349 (2)0.03560 (15)0.1708 (2)0.0607 (7)
H17A0.44820.08130.13300.091*
H17B0.51260.01380.17950.091*
H17C0.38950.00730.11610.091*
C180.4344 (2)0.08752 (15)0.3912 (3)0.0649 (7)
H18A0.43800.13490.35980.097*
H18B0.39410.08660.47800.097*
H18C0.51610.06930.39070.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0754 (4)0.0458 (4)0.0412 (3)0.0087 (3)0.0030 (3)0.0069 (3)
S20.0585 (4)0.0989 (6)0.0462 (4)0.0190 (4)0.0089 (3)0.0110 (3)
O10.0847 (12)0.0408 (9)0.0420 (10)0.0074 (8)0.0043 (8)0.0010 (7)
O20.0466 (9)0.0556 (9)0.0366 (9)0.0066 (7)0.0027 (6)0.0042 (7)
N10.0578 (11)0.0324 (9)0.0363 (10)0.0027 (8)0.0014 (8)0.0020 (8)
N20.0563 (11)0.0337 (9)0.0376 (10)0.0042 (8)0.0039 (8)0.0023 (8)
N30.0363 (9)0.0525 (11)0.0411 (11)0.0040 (8)0.0011 (8)0.0005 (8)
N40.0415 (10)0.0599 (12)0.0423 (11)0.0091 (9)0.0012 (8)0.0127 (9)
C10.0789 (19)0.0417 (14)0.096 (2)0.0145 (13)0.0081 (16)0.0041 (14)
C20.0633 (15)0.0318 (11)0.0454 (13)0.0014 (10)0.0067 (11)0.0026 (10)
C30.0472 (12)0.0355 (11)0.0416 (13)0.0012 (9)0.0045 (10)0.0017 (10)
C40.0414 (12)0.0351 (11)0.0431 (13)0.0009 (9)0.0080 (9)0.0011 (9)
C50.0413 (11)0.0320 (11)0.0437 (12)0.0075 (9)0.0031 (9)0.0018 (9)
C60.0430 (12)0.0453 (12)0.0514 (14)0.0050 (10)0.0094 (10)0.0004 (10)
C70.0501 (13)0.0433 (13)0.0645 (16)0.0060 (10)0.0108 (11)0.0003 (11)
C80.0619 (15)0.0435 (13)0.0646 (16)0.0077 (11)0.0103 (12)0.0097 (12)
C90.0486 (13)0.0422 (12)0.0543 (14)0.0061 (10)0.0105 (11)0.0072 (11)
C100.0326 (11)0.0402 (12)0.0456 (13)0.0005 (9)0.0019 (9)0.0014 (10)
C110.0402 (12)0.0401 (12)0.0456 (13)0.0009 (9)0.0025 (10)0.0032 (10)
C120.0417 (12)0.0366 (11)0.0377 (12)0.0042 (9)0.0044 (9)0.0012 (9)
C130.0362 (11)0.0522 (13)0.0426 (13)0.0029 (10)0.0058 (9)0.0025 (10)
C140.0560 (15)0.0608 (16)0.086 (2)0.0131 (13)0.0092 (14)0.0163 (15)
C150.0644 (17)0.0511 (15)0.117 (3)0.0140 (13)0.0166 (17)0.0041 (16)
C160.214 (4)0.0405 (15)0.0529 (18)0.0181 (19)0.011 (2)0.0113 (13)
C170.0458 (13)0.0868 (18)0.0492 (15)0.0151 (13)0.0037 (11)0.0059 (13)
C180.0494 (14)0.088 (2)0.0584 (17)0.0067 (13)0.0092 (12)0.0083 (14)
Geometric parameters (Å, º) top
S1—C41.659 (2)C7—C81.515 (3)
S2—C111.658 (2)C7—H7A0.9700
O1—C31.224 (2)C7—H7B0.9700
O2—C121.217 (2)C8—C91.512 (3)
N1—C31.368 (3)C8—H8A0.9700
N1—C41.402 (3)C8—H8B0.9700
N1—H10.8600C9—C101.522 (3)
N2—C41.322 (3)C9—H9A0.9700
N2—C51.455 (2)C9—H9B0.9700
N2—H20.8600C10—H100.9800
N3—C111.317 (3)C12—C131.521 (3)
N3—C101.463 (3)C13—C171.522 (3)
N3—H30.8600C13—C181.525 (3)
N4—C121.371 (3)C13—C141.528 (3)
N4—C111.397 (3)C14—H14A0.9600
N4—H40.8600C14—H14B0.9600
C1—C21.526 (4)C14—H14C0.9600
C1—H1A0.9600C15—H15A0.9600
C1—H1B0.9600C15—H15B0.9600
C1—H1C0.9600C15—H15C0.9600
C2—C161.514 (3)C16—H16A0.9600
C2—C151.528 (4)C16—H16B0.9600
C2—C31.528 (3)C16—H16C0.9600
C5—C101.522 (3)C17—H17A0.9600
C5—C61.524 (3)C17—H17B0.9600
C5—H50.9800C17—H17C0.9600
C6—C71.516 (3)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C3—N1—C4129.13 (18)C8—C9—C10112.04 (18)
C3—N1—H1115.4C8—C9—H9A109.2
C4—N1—H1115.4C10—C9—H9A109.2
C4—N2—C5124.21 (18)C8—C9—H9B109.2
C4—N2—H2117.9C10—C9—H9B109.2
C5—N2—H2117.9H9A—C9—H9B107.9
C11—N3—C10125.39 (18)N3—C10—C5108.89 (16)
C11—N3—H3117.3N3—C10—C9111.49 (16)
C10—N3—H3117.3C5—C10—C9110.94 (17)
C12—N4—C11129.61 (18)N3—C10—H10108.5
C12—N4—H4115.2C5—C10—H10108.5
C11—N4—H4115.2C9—C10—H10108.5
C2—C1—H1A109.5N3—C11—N4115.86 (18)
C2—C1—H1B109.5N3—C11—S2126.07 (16)
H1A—C1—H1B109.5N4—C11—S2118.07 (16)
C2—C1—H1C109.5O2—C12—N4121.47 (19)
H1A—C1—H1C109.5O2—C12—C13122.65 (18)
H1B—C1—H1C109.5N4—C12—C13115.82 (18)
C16—C2—C1109.5 (2)C12—C13—C17109.11 (18)
C16—C2—C15111.0 (2)C12—C13—C18108.09 (19)
C1—C2—C15108.7 (2)C17—C13—C18109.67 (19)
C16—C2—C3108.65 (19)C12—C13—C14111.20 (17)
C1—C2—C3110.51 (19)C17—C13—C14108.9 (2)
C15—C2—C3108.50 (18)C18—C13—C14109.9 (2)
O1—C3—N1122.32 (19)C13—C14—H14A109.5
O1—C3—C2121.91 (19)C13—C14—H14B109.5
N1—C3—C2115.75 (18)H14A—C14—H14B109.5
N2—C4—N1115.32 (18)C13—C14—H14C109.5
N2—C4—S1125.71 (16)H14A—C14—H14C109.5
N1—C4—S1118.96 (16)H14B—C14—H14C109.5
N2—C5—C10109.84 (16)C2—C15—H15A109.5
N2—C5—C6109.84 (16)C2—C15—H15B109.5
C10—C5—C6111.57 (17)H15A—C15—H15B109.5
N2—C5—H5108.5C2—C15—H15C109.5
C10—C5—H5108.5H15A—C15—H15C109.5
C6—C5—H5108.5H15B—C15—H15C109.5
C7—C6—C5112.79 (17)C2—C16—H16A109.5
C7—C6—H6A109.0C2—C16—H16B109.5
C5—C6—H6A109.0H16A—C16—H16B109.5
C7—C6—H6B109.0C2—C16—H16C109.5
C5—C6—H6B109.0H16A—C16—H16C109.5
H6A—C6—H6B107.8H16B—C16—H16C109.5
C8—C7—C6110.14 (19)C13—C17—H17A109.5
C8—C7—H7A109.6C13—C17—H17B109.5
C6—C7—H7A109.6H17A—C17—H17B109.5
C8—C7—H7B109.6C13—C17—H17C109.5
C6—C7—H7B109.6H17A—C17—H17C109.5
H7A—C7—H7B108.1H17B—C17—H17C109.5
C9—C8—C7110.28 (19)C13—C18—H18A109.5
C9—C8—H8A109.6C13—C18—H18B109.5
C7—C8—H8A109.6H18A—C18—H18B109.5
C9—C8—H8B109.6C13—C18—H18C109.5
C7—C8—H8B109.6H18A—C18—H18C109.5
H8A—C8—H8B108.1H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.972.650 (2)135
N3—H3···O20.861.992.670 (2)135
N1—H1···O2i0.862.253.078 (2)161
C1—H1B···O2i0.962.543.462 (3)161
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H32N4O2S2
Mr400.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.960 (2), 19.065 (4), 10.378 (2)
β (°) 96.112 (4)
V3)2156.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.48 × 0.41 × 0.37
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.883, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
10928, 3779, 2828
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.07
No. of reflections3779
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.972.650 (2)135
N3—H3···O20.861.992.670 (2)135
N1—H1···O2i0.862.253.078 (2)161
C1—H1B···O2i0.962.543.462 (3)161
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants OUP UKM OUP-BIT-28/20076 and UMT-FRGS-59001.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds