organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 March 2008; accepted 29 March 2008; online 2 April 2008)

The title compound, C15H11BrO3S, was prepared by the oxidation of 5-bromo-2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 78.99 (8)° with the plane of the benzofuran fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a benzene H atom of the benzofuran unit and the phenyl ring of the phenyl­sulfonyl substituent from a neighbouring mol­ecule. In addition, the crystal structure exhibits intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 5-bromo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o521-o522.]); Seo et al. (2007[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3204.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11BrO3S

  • Mr = 351.21

  • Monoclinic, P 21 /n

  • a = 7.337 (1) Å

  • b = 11.345 (1) Å

  • c = 16.602 (2) Å

  • β = 94.582 (3)°

  • V = 1377.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.14 mm−1

  • T = 173 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.463, Tmax = 0.542

  • 8005 measured reflections

  • 3009 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.03

  • 3009 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 0.95 2.74 3.561 (3) 145
C10—H10⋯O2ii 0.95 2.54 3.285 (3) 135
C14—H14⋯O3iii 0.95 2.45 3.249 (3) 141
C15—H15C⋯O3 0.98 2.40 3.131 (4) 131
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg is the centroid of the phenyl ring C9–C14.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to earlier communications on the synthesis and structure of 5-bromo-2-methyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007) and 5-bromo-2-methyl-3-phenylsulfinyl-1-benzofuran (Seo et al., 2007). Here we report the crystal structure of the title compound, 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9–C14) makes a dihedral angle of 78.99 (8)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a benzene H atom of the benzofuran unit and the phenyl ring of the phenylsulfonyl substituent from an adjacent molecule, with a C6—H6···Cgi separation of 2.74 Å (Fig. 2; Cg is the centroid of the C9–C14 phenyl ring, symmetry code as in Fig. 2). Additionally, intra- and intermolecular C—H···O interactions in the structure are observed (Fig. 2).

Related literature top

For the crystal structures of similar 5-bromo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2007); Seo et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 336 mg, 1.5 mmol) was added in small portions to a stirred solution of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (223 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 464–465 K; Rf = 0.59 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.80 (s, 3H), 7.29 (d, J = 8.44 Hz, 1H), 7.41 (dd, J = 8.44 Hz and J = 1.84 Hz, 1H), 7.51–7.56 (m, 2H), 7.58–7.61 (m, 1H), 7.98–8.02 (m, 2H), 8.05 (d, J = 2.20 Hz, 1H); EI—MS 352 [M+2], 350 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 2, -y + 1, -z; (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 3/2, y + 1/2, -z + 1/2.]
5-Bromo-2-methyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C15H11BrO3SF(000) = 704
Mr = 351.21Dx = 1.693 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ynCell parameters from 3065 reflections
a = 7.337 (1) Åθ = 2.5–27.7°
b = 11.345 (1) ŵ = 3.14 mm1
c = 16.602 (2) ÅT = 173 K
β = 94.582 (3)°Block, colorless
V = 1377.5 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1413
Tmin = 0.463, Tmax = 0.542l = 1421
8005 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.6448P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H11BrO3SV = 1377.5 (3) Å3
Mr = 351.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.337 (1) ŵ = 3.14 mm1
b = 11.345 (1) ÅT = 173 K
c = 16.602 (2) Å0.30 × 0.20 × 0.20 mm
β = 94.582 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2349 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 0.542Rint = 0.033
8005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
3009 reflectionsΔρmin = 0.44 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.79772 (5)0.88457 (2)0.038216 (19)0.03963 (12)
S0.65781 (9)0.40138 (5)0.19581 (4)0.02489 (16)
O10.7486 (3)0.36914 (16)0.03375 (11)0.0296 (4)
O20.5677 (3)0.50746 (16)0.21839 (12)0.0327 (5)
O30.5740 (3)0.28903 (15)0.20838 (12)0.0344 (5)
C10.6960 (4)0.4145 (2)0.09406 (16)0.0242 (5)
C20.7309 (3)0.5236 (2)0.05267 (15)0.0227 (5)
C30.7410 (4)0.6429 (2)0.07353 (16)0.0255 (5)
H30.72090.66930.12640.031*
C40.7819 (4)0.7208 (2)0.01307 (17)0.0287 (6)
C50.8107 (4)0.6854 (2)0.06521 (16)0.0305 (6)
H50.83720.74250.10450.037*
C60.8010 (4)0.5675 (3)0.08587 (16)0.0308 (6)
H60.81980.54120.13890.037*
C70.7626 (3)0.4899 (2)0.02563 (16)0.0245 (5)
C80.7097 (4)0.3254 (2)0.03977 (16)0.0271 (6)
C90.8786 (4)0.3998 (2)0.24546 (16)0.0259 (6)
C100.9716 (4)0.2932 (2)0.25599 (16)0.0321 (6)
H100.91600.22180.23680.039*
C111.1457 (5)0.2921 (3)0.29469 (19)0.0446 (8)
H111.21050.22000.30240.054*
C121.2249 (5)0.3974 (3)0.32221 (19)0.0506 (9)
H121.34450.39690.34880.061*
C131.1314 (5)0.5031 (3)0.31132 (19)0.0467 (8)
H131.18700.57450.33040.056*
C140.9580 (4)0.5048 (2)0.27289 (17)0.0333 (6)
H140.89350.57710.26520.040*
C150.6972 (4)0.1947 (2)0.04402 (19)0.0374 (7)
H15A0.81930.16050.04190.056*
H15B0.61690.16570.00170.056*
H15C0.64710.17190.09470.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0526 (2)0.02501 (16)0.0412 (2)0.00489 (13)0.00320 (14)0.00437 (12)
S0.0301 (4)0.0189 (3)0.0269 (3)0.0004 (2)0.0096 (3)0.0010 (2)
O10.0328 (11)0.0301 (10)0.0263 (10)0.0005 (8)0.0042 (8)0.0057 (8)
O20.0393 (12)0.0266 (9)0.0341 (11)0.0064 (8)0.0149 (9)0.0020 (8)
O30.0392 (12)0.0259 (10)0.0398 (12)0.0066 (8)0.0140 (9)0.0038 (8)
C10.0256 (14)0.0230 (12)0.0246 (13)0.0000 (10)0.0059 (11)0.0002 (10)
C20.0191 (13)0.0259 (12)0.0235 (13)0.0019 (10)0.0038 (10)0.0020 (10)
C30.0302 (14)0.0242 (12)0.0224 (13)0.0021 (10)0.0046 (11)0.0006 (10)
C40.0273 (15)0.0262 (13)0.0325 (15)0.0024 (11)0.0019 (12)0.0024 (11)
C50.0288 (15)0.0371 (15)0.0258 (14)0.0000 (12)0.0039 (11)0.0081 (12)
C60.0296 (15)0.0427 (15)0.0202 (14)0.0016 (12)0.0033 (11)0.0001 (12)
C70.0224 (13)0.0252 (12)0.0258 (14)0.0019 (10)0.0007 (11)0.0038 (10)
C80.0243 (14)0.0275 (13)0.0298 (15)0.0014 (11)0.0032 (11)0.0022 (11)
C90.0337 (15)0.0256 (13)0.0196 (13)0.0007 (10)0.0096 (11)0.0012 (10)
C100.0420 (18)0.0317 (14)0.0239 (14)0.0033 (12)0.0101 (12)0.0077 (11)
C110.043 (2)0.059 (2)0.0330 (17)0.0144 (16)0.0095 (14)0.0149 (15)
C120.0376 (19)0.087 (3)0.0264 (17)0.0062 (18)0.0010 (14)0.0063 (17)
C130.053 (2)0.059 (2)0.0276 (16)0.0175 (17)0.0033 (14)0.0068 (15)
C140.0444 (18)0.0305 (14)0.0258 (14)0.0048 (12)0.0087 (13)0.0023 (11)
C150.0437 (19)0.0249 (14)0.0443 (18)0.0021 (12)0.0074 (14)0.0072 (12)
Geometric parameters (Å, º) top
Br—C41.906 (3)C6—H60.950
S—O21.4372 (18)C8—C151.487 (4)
S—O31.4377 (18)C9—C141.387 (4)
S—C11.740 (3)C9—C101.393 (4)
S—C91.758 (3)C10—C111.383 (4)
O1—C81.369 (3)C10—H100.950
O1—C71.380 (3)C11—C121.389 (5)
C1—C81.363 (4)C11—H110.950
C1—C21.448 (3)C12—C131.387 (5)
C2—C71.392 (3)C12—H120.950
C2—C31.398 (3)C13—C141.377 (4)
C3—C41.388 (4)C13—H130.950
C3—H30.950C14—H140.950
C4—C51.392 (4)C15—H15A0.980
C5—C61.381 (4)C15—H15B0.980
C5—H50.950C15—H15C0.980
C6—C71.378 (4)
O2—S—O3119.57 (12)C1—C8—O1110.7 (2)
O2—S—C1107.14 (12)C1—C8—C15134.4 (3)
O3—S—C1108.70 (12)O1—C8—C15114.9 (2)
O2—S—C9108.19 (12)C14—C9—C10121.1 (3)
O3—S—C9108.15 (12)C14—C9—S119.5 (2)
C1—S—C9104.02 (12)C10—C9—S119.5 (2)
C8—O1—C7106.97 (19)C11—C10—C9119.4 (3)
C8—C1—C2107.1 (2)C11—C10—H10120.3
C8—C1—S127.2 (2)C9—C10—H10120.3
C2—C1—S125.57 (19)C10—C11—C12119.5 (3)
C7—C2—C3119.2 (2)C10—C11—H11120.3
C7—C2—C1104.9 (2)C12—C11—H11120.3
C3—C2—C1135.9 (2)C13—C12—C11120.7 (3)
C4—C3—C2116.6 (2)C13—C12—H12119.6
C4—C3—H3121.7C11—C12—H12119.6
C2—C3—H3121.7C14—C13—C12120.1 (3)
C3—C4—C5123.3 (2)C14—C13—H13119.9
C3—C4—Br118.4 (2)C12—C13—H13119.9
C5—C4—Br118.32 (19)C13—C14—C9119.2 (3)
C6—C5—C4120.1 (2)C13—C14—H14120.4
C6—C5—H5119.9C9—C14—H14120.4
C4—C5—H5119.9C8—C15—H15A109.5
C7—C6—C5116.6 (2)C8—C15—H15B109.5
C7—C6—H6121.7H15A—C15—H15B109.5
C5—C6—H6121.7C8—C15—H15C109.5
C6—C7—O1125.5 (2)H15A—C15—H15C109.5
C6—C7—C2124.2 (2)H15B—C15—H15C109.5
O1—C7—C2110.3 (2)
O2—S—C1—C8152.5 (2)C3—C2—C7—O1179.2 (2)
O3—S—C1—C822.0 (3)C1—C2—C7—O10.1 (3)
C9—S—C1—C893.1 (3)C2—C1—C8—O10.8 (3)
O2—S—C1—C231.8 (3)S—C1—C8—O1177.14 (19)
O3—S—C1—C2162.3 (2)C2—C1—C8—C15177.1 (3)
C9—S—C1—C282.7 (2)S—C1—C8—C150.8 (5)
C8—C1—C2—C70.4 (3)C7—O1—C8—C10.8 (3)
S—C1—C2—C7176.8 (2)C7—O1—C8—C15177.5 (2)
C8—C1—C2—C3178.5 (3)O2—S—C9—C1421.6 (2)
S—C1—C2—C32.0 (5)O3—S—C9—C14152.5 (2)
C7—C2—C3—C40.3 (4)C1—S—C9—C1492.0 (2)
C1—C2—C3—C4179.1 (3)O2—S—C9—C10158.9 (2)
C2—C3—C4—C50.5 (4)O3—S—C9—C1028.0 (2)
C2—C3—C4—Br179.92 (19)C1—S—C9—C1087.4 (2)
C3—C4—C5—C60.6 (4)C14—C9—C10—C110.2 (4)
Br—C4—C5—C6179.8 (2)S—C9—C10—C11179.7 (2)
C4—C5—C6—C70.2 (4)C9—C10—C11—C120.2 (4)
C5—C6—C7—O1179.4 (2)C10—C11—C12—C130.1 (5)
C5—C6—C7—C21.1 (4)C11—C12—C13—C140.0 (5)
C8—O1—C7—C6179.8 (3)C12—C13—C14—C90.1 (4)
C8—O1—C7—C20.6 (3)C10—C9—C14—C130.2 (4)
C3—C2—C7—C61.2 (4)S—C9—C14—C13179.6 (2)
C1—C2—C7—C6179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.952.743.561 (3)145
C10—H10···O2ii0.952.543.285 (3)135
C14—H14···O3iii0.952.453.249 (3)141
C15—H15C···O30.982.403.131 (4)131
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11BrO3S
Mr351.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.337 (1), 11.345 (1), 16.602 (2)
β (°) 94.582 (3)
V3)1377.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.463, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
8005, 3009, 2349
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.03
No. of reflections3009
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.952.743.561 (3)145.2
C10—H10···O2ii0.952.543.285 (3)135.0
C14—H14···O3iii0.952.453.249 (3)141.4
C15—H15C···O30.982.403.131 (4)130.6
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o521–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds