metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m643-m644

Bis(5-amino-4-amino­carbonyl-1H-imid­azol-3-ium) (5-amino-4-amino­carbonyl-1H-imidazol-3-ium-κO)-di-μ-chlorido-hepta­chlorido-dibismuth(III) mono­hydrate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center for Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 26 March 2008; accepted 6 April 2008; online 10 April 2008)

The title compound, (C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2O, was prepared by the reaction of bis­muth trichloride and 5-amino-1H-imidazole-4-carboxamide in a dilute HCl medium. The asymmetric unit contains two 5-amino-4-amino­carbonyl-1H-imidazol-3-ium cations, one edge-shared non-centrosymmetric biocta­hedral [Bi2C19(C4H7N4O)]2− dianion and a water mol­ecule. In the dianion, the planar 5-amino-4-amino­carbonyl-1H-imidazol-3-ium ligand occupies an equatorial site and is inclined at an angle of 75.7 (2)° to the Bi2(μ-C1)2 plane. The salt forms a three-dimensional network arising from hydrogen bonds between cations, anions and water mol­ecules.

Related literature

For general background, see: Turel et al. (1998[Turel, I., Golic, L., Bukovec, P. & Gubina, M. (1998). Inorg. Biochem. 71, 53-60.]); Goforth et al. (2004[Goforth, A. M., Smith, M. D., Peterson, L. Jr & Zur Loye, H.-C. (2004). Inorg. Chem. 43, 7042-7049.]). For related structures, see: Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719-m1720.]); Wu et al. (2005[Wu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506-m1508.]); Kyriakidis et al., (1990[Kyriakidis, C. E., Christidis, P. C., Rentzeperis, P. J., Tossidis, I. A. & Bolos, C. A. (1990). Z. Kristallogr. 193, 101-110.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2O

  • Mr = 1136.43

  • Triclinic, [P \overline 1]

  • a = 11.3365 (5) Å

  • b = 12.2486 (6) Å

  • c = 12.7919 (6) Å

  • α = 74.433 (3)°

  • β = 65.939 (3)°

  • γ = 75.397 (3)°

  • V = 1541.71 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.22 mm−1

  • T = 123 (2) K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.150, Tmax = 0.194 (expected range = 0.067–0.087)

  • 18217 measured reflections

  • 5695 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.223

  • S = 1.10

  • 5695 reflections

  • 359 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 5.85 e Å−3

  • Δρmin = −4.41 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—O1 2.464 (10)
Bi1—Cl1 2.543 (3)
Bi1—Cl2 2.589 (4)
Bi1—Cl3 2.601 (4)
Bi1—Cl4 2.872 (4)
Bi1—Cl5 2.921 (4)
Bi2—Cl7 2.535 (3)
Bi2—Cl8 2.606 (4)
Bi2—Cl6 2.676 (4)
Bi2—Cl9 2.725 (4)
Bi2—Cl5 2.859 (4)
Bi2—Cl4 2.928 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯Cl8i 0.82 (12) 2.44 (14) 3.215 (11) 158 (16)
O4—H4D⋯Cl1 0.83 (12) 2.38 (13) 3.190 (12) 168 (17)
N1—H1⋯Cl6ii 0.88 2.36 3.226 (12) 169
N2—H2⋯Cl9iii 0.88 2.30 3.166 (11) 170
N3—H3A⋯O1 0.88 2.33 2.869 (17) 120
N3—H3A⋯Cl1 0.88 2.82 3.649 (15) 157
N3—H3B⋯Cl8iv 0.88 2.71 3.451 (14) 142
N5—H5⋯O4v 0.88 1.87 2.725 (16) 163
N6—H6⋯Cl3vi 0.88 2.40 3.230 (12) 158
N7—H7A⋯Cl5vi 0.88 2.53 3.358 (16) 156
N7—H7B⋯O2 0.88 2.24 2.802 (18) 121
N8—H8A⋯O2v 0.88 1.96 2.821 (15) 166
N8—H8B⋯O4v 0.88 2.04 2.905 (18) 168
N9—H9⋯Cl2 0.88 2.63 3.348 (13) 140
N10—H10⋯Cl4vii 0.88 2.37 3.249 (12) 175
N11—H11A⋯O3 0.88 2.30 2.850 (18) 120
N11—H11A⋯Cl5vi 0.88 2.83 3.426 (14) 127
N11—H11B⋯Cl2 0.88 2.70 3.447 (15) 143
N12—H12A⋯Cl9viii 0.88 2.45 3.315 (13) 168
N12—H12B⋯Cl4vii 0.88 2.65 3.529 (15) 177
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z+1; (iii) -x+2, -y+1, -z+2; (iv) -x+2, -y, -z+2; (v) -x+1, -y+1, -z+2; (vi) -x+2, -y+1, -z+1; (vii) -x+2, -y, -z+1; (viii) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bismuth trihalides have an extensive coordination chemistry as a result of the Lewis acidity of the group 15 element centre. Recently, there is increasing interest in halobismuthate(III) compounds, due to their anti-ulcer activity (Turel et al., 1998) and their unique optical and electronic properties, including nonlinear optical activity, luminescence and semiconductivity (Goforth et al., 2004). We report here the crystal structure of the title organic–inorganic hybrid complex.

The asymmetric unit of the title compound contains two 5-amino-4-aminocarbonyl-1H-imidazol-3-ium (C4H7N4O+) cations, an edge-shared bi-octahedral dianion {[Bi2C19(C4H7N4O)]2-} and a water molecule. The dianion of the title compound is non-centrosymmetric compared to large number of centrosymmetric decanchlorobismuthates that have been crystallographically verified, as exemplified by (C5H14N2)2[Bi2Cl10].2H2O (Fu et al., 2005) and (C4H12N2)2[Bi2Cl10].3H2O (Wu et al., 2005). A search of the Cambridge Structural Database (Version 5.29, January 2008; Allen, 2002) yielded no hits for noncentrosymmetric octanchlorobismuthates.

In the noncentrosymmetric edge-shared bi-octahedral dianion, the planar 5-amino-4-aminocarbonyl-1H-imidazol-3-ium ligand occupied a octahedral terminal site, inclined at angle of 75.7 (2)° to the Bi2(µ-C1)2 plane. Atoms Cl1, Cl2, Cl4, Cl5, Cl7, Cl8, Bi1 and Bi2 are coplaner, with an r.m.s. deviation of 0.120 Å. The Bi—O distance of 2.464 (10) Å is slightly longer compared to the reported value of of 2.424 (10) Å (Kyriakidis et al., 1990). The Bi—Cl distances (Table 1) lie in the range 2.535 (3) Å-2.928 (4) Å, with the Bi—C1 distances involving the bridging C1 atoms being longer (2.859 (4) Å-2.928 (4) Å). None of the interbond angles deviate significantly (>10°) from idealized octahedral angles.

The N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 2) link the constituent ions and water molecules into a three-dimensional network (Fig.2).

Related literature top

For general background, see: Turel et al. (1998); Goforth et al. (2004). For related structures, see: Fu et al. (2005); Wu et al. (2005); Kyriakidis et al., (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was prepared by the reaction of bismuth trichloride (0.500 g, 1.59 mmol) and 5-amino-4-carboxamide-1H-imidazole (0.601,4.9 mmol) in a hydrochloric acid medium. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of the title compound at room temperature.

Refinement top

Water H atoms were located in a difference map and their positional parameters were refined with a O-H distance restraint of 0.85 (3) Å. All other H atoms were placed at calculated positions (N-H = 0.88 Å and C-H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N,O). The highest residual density peak is located 0.89 Å from atom Bi1 and the deepest hole is located 0.77 Å from atom Bi2.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately down the c axis. Dashed lines indicate intermolecular hydrogen bonds.
Bis(5-amino-4-aminocarbonyl-1H-imidazol-3-ium)(5-amino-4-aminocarbonyl- 1H-imidazol-3-ium-κO)-di-µ-chlorido-heptachlorido-dibismuth(III) monohydrate top
Crystal data top
(C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2OZ = 2
Mr = 1136.43F(000) = 1060
Triclinic, P1Dx = 2.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3365 (5) ÅCell parameters from 5695 reflections
b = 12.2486 (6) Åθ = 1.8–25.5°
c = 12.7919 (6) ŵ = 12.22 mm1
α = 74.433 (3)°T = 123 K
β = 65.939 (3)°Block, yellow
γ = 75.397 (3)°0.25 × 0.22 × 0.20 mm
V = 1541.71 (12) Å3
Data collection top
Rigaku Mercury
diffractometer
5695 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 7.31 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scansh = 1313
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1412
Tmin = 0.150, Tmax = 0.194l = 1515
18217 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.223 w = 1/[σ2(Fo2) + (0.1568P)2 + 11.6845P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5695 reflectionsΔρmax = 5.85 e Å3
359 parametersΔρmin = 4.41 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (6)
Crystal data top
(C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2Oγ = 75.397 (3)°
Mr = 1136.43V = 1541.71 (12) Å3
Triclinic, P1Z = 2
a = 11.3365 (5) ÅMo Kα radiation
b = 12.2486 (6) ŵ = 12.22 mm1
c = 12.7919 (6) ÅT = 123 K
α = 74.433 (3)°0.25 × 0.22 × 0.20 mm
β = 65.939 (3)°
Data collection top
Rigaku Mercury
diffractometer
5695 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4988 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.194Rint = 0.063
18217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0752 restraints
wR(F2) = 0.223H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1568P)2 + 11.6845P]
where P = (Fo2 + 2Fc2)/3
5695 reflectionsΔρmax = 5.85 e Å3
359 parametersΔρmin = 4.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.88808 (4)0.20130 (4)0.77380 (4)0.0190 (2)
Bi21.29373 (4)0.22332 (4)0.68713 (4)0.0197 (2)
Cl10.7650 (4)0.0403 (3)0.9119 (3)0.0322 (8)
Cl20.6905 (4)0.3183 (3)0.7184 (3)0.0327 (8)
Cl30.9668 (4)0.0975 (3)0.5986 (3)0.0260 (8)
Cl41.1107 (4)0.0608 (3)0.8230 (3)0.0279 (8)
Cl51.0678 (4)0.3675 (3)0.6497 (3)0.0351 (9)
Cl61.3711 (4)0.1462 (3)0.4887 (3)0.0303 (8)
Cl71.4310 (4)0.3802 (3)0.5692 (3)0.0310 (8)
Cl81.4877 (4)0.0783 (3)0.7303 (3)0.0297 (8)
Cl91.2315 (4)0.3140 (3)0.8792 (3)0.0332 (9)
O10.8130 (11)0.2826 (10)0.9511 (9)0.032 (2)
O20.6215 (10)0.5277 (8)0.8614 (8)0.028 (2)
O30.9864 (12)0.3596 (10)0.1801 (10)0.037 (3)
O40.4595 (11)0.1325 (10)0.9725 (9)0.036 (2)
H4C0.448 (17)0.134 (15)0.913 (9)0.043*
H4D0.535 (6)0.100 (14)0.965 (16)0.043*
N10.5550 (11)0.3189 (10)1.2864 (10)0.023 (2)
H10.50020.28011.34720.027*
N20.6655 (10)0.4515 (9)1.1772 (9)0.021 (2)
H20.69680.51651.15220.025*
N30.6306 (14)0.1787 (11)1.1651 (12)0.030 (3)
H3A0.68240.15721.09860.036*
H3B0.57780.13321.21960.036*
N40.8721 (12)0.4479 (11)0.9441 (11)0.032 (3)
H4A0.93230.44690.87390.038*
H4B0.85920.50430.97990.038*
N50.7091 (11)0.8051 (10)0.8213 (10)0.026 (3)
H50.66470.83640.88360.031*
N60.8406 (12)0.7822 (10)0.6487 (10)0.026 (3)
H60.89930.79560.57780.032*
N70.8068 (18)0.5992 (14)0.6422 (13)0.049 (4)
H7A0.86240.60280.56970.059*
H7B0.76690.53900.67810.059*
N80.5411 (11)0.6387 (11)1.0021 (10)0.029 (3)
H8A0.49250.58891.05460.035*
H8B0.54140.70331.01980.035*
N90.7241 (11)0.2073 (10)0.4935 (10)0.024 (2)
H90.67760.22150.56420.029*
N100.8048 (11)0.1235 (10)0.3465 (10)0.023 (2)
H100.82220.07250.30290.028*
N110.8338 (14)0.3714 (11)0.4186 (12)0.036 (3)
H11A0.89040.41120.36070.043*
H11B0.79290.39440.48590.043*
N120.9985 (13)0.2033 (12)0.1141 (11)0.030 (3)
H12A1.05630.22820.04590.037*
H12B0.97270.13730.12700.037*
C10.7034 (12)0.3655 (11)1.1141 (11)0.020 (3)
C20.6319 (12)0.2801 (11)1.1833 (11)0.019 (3)
C30.5752 (16)0.4227 (14)1.2810 (13)0.030 (3)
H30.53310.46771.34020.036*
C40.7999 (13)0.3635 (13)0.9963 (11)0.025 (3)
C50.7001 (12)0.7001 (11)0.8102 (12)0.021 (3)
C60.7828 (13)0.6855 (13)0.6981 (12)0.023 (3)
C70.7944 (16)0.8524 (17)0.7245 (16)0.036 (4)
H70.81900.92500.71100.043*
C80.6157 (13)0.6159 (12)0.8940 (11)0.022 (3)
C90.8589 (13)0.2245 (12)0.3115 (12)0.022 (3)
C100.8098 (13)0.2759 (12)0.4041 (12)0.023 (3)
C110.7240 (12)0.1182 (10)0.4551 (11)0.020 (3)
H110.67320.05890.49930.024*
C120.9513 (13)0.2642 (12)0.1958 (12)0.022 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0240 (3)0.0227 (4)0.0089 (3)0.0076 (2)0.0030 (2)0.0021 (2)
Bi20.0241 (3)0.0198 (4)0.0132 (3)0.0090 (2)0.0041 (2)0.0009 (2)
Cl10.0335 (17)0.0309 (19)0.0273 (19)0.0177 (15)0.0048 (15)0.0037 (15)
Cl20.0371 (18)0.039 (2)0.0231 (18)0.0031 (16)0.0130 (15)0.0127 (15)
Cl30.0366 (17)0.0275 (18)0.0119 (16)0.0086 (14)0.0055 (13)0.0029 (13)
Cl40.0378 (19)0.0293 (19)0.0177 (17)0.0132 (15)0.0102 (14)0.0013 (14)
Cl50.041 (2)0.031 (2)0.0256 (19)0.0096 (16)0.0075 (16)0.0039 (16)
Cl60.047 (2)0.0273 (19)0.0214 (18)0.0161 (16)0.0126 (16)0.0019 (15)
Cl70.0423 (19)0.0284 (19)0.0200 (18)0.0222 (15)0.0033 (15)0.0016 (14)
Cl80.0342 (17)0.0319 (19)0.0198 (17)0.0073 (15)0.0083 (14)0.0003 (14)
Cl90.043 (2)0.035 (2)0.0185 (18)0.0209 (16)0.0029 (15)0.0004 (15)
O10.050 (6)0.035 (6)0.012 (5)0.008 (5)0.008 (5)0.012 (4)
O20.042 (5)0.032 (6)0.013 (5)0.018 (4)0.008 (4)0.003 (4)
O30.049 (6)0.032 (6)0.022 (6)0.011 (5)0.004 (5)0.002 (5)
O40.039 (6)0.052 (7)0.018 (5)0.015 (5)0.004 (5)0.014 (5)
N10.035 (6)0.015 (6)0.014 (6)0.007 (5)0.004 (5)0.001 (5)
N20.030 (5)0.017 (6)0.018 (6)0.010 (5)0.011 (5)0.005 (4)
N30.048 (8)0.020 (7)0.019 (7)0.016 (6)0.006 (6)0.003 (5)
N40.042 (7)0.030 (7)0.019 (6)0.020 (6)0.001 (5)0.000 (5)
N50.034 (6)0.025 (6)0.021 (6)0.011 (5)0.008 (5)0.003 (5)
N60.032 (6)0.024 (7)0.015 (6)0.008 (5)0.004 (5)0.002 (5)
N70.074 (11)0.032 (8)0.021 (8)0.008 (8)0.003 (7)0.007 (6)
N80.034 (6)0.041 (7)0.016 (6)0.024 (6)0.007 (5)0.003 (5)
N90.030 (6)0.024 (6)0.014 (6)0.004 (5)0.006 (5)0.001 (5)
N100.031 (6)0.026 (6)0.013 (6)0.011 (5)0.002 (5)0.007 (5)
N110.053 (8)0.024 (7)0.028 (7)0.014 (6)0.008 (6)0.005 (6)
N120.033 (6)0.029 (7)0.017 (7)0.008 (5)0.001 (5)0.001 (5)
C10.024 (6)0.017 (6)0.012 (6)0.001 (5)0.003 (5)0.002 (5)
C20.024 (6)0.021 (7)0.012 (6)0.002 (5)0.009 (5)0.001 (5)
C30.047 (9)0.027 (8)0.014 (7)0.006 (7)0.008 (6)0.006 (6)
C40.031 (7)0.037 (8)0.008 (6)0.013 (6)0.007 (5)0.001 (6)
C50.023 (6)0.018 (7)0.017 (7)0.002 (5)0.009 (5)0.003 (5)
C60.024 (6)0.023 (7)0.013 (7)0.001 (5)0.004 (5)0.003 (5)
C70.029 (8)0.040 (10)0.034 (10)0.013 (7)0.013 (7)0.009 (8)
C80.023 (6)0.025 (8)0.011 (6)0.001 (6)0.006 (5)0.003 (6)
C90.027 (6)0.021 (7)0.016 (7)0.003 (5)0.009 (6)0.001 (6)
C100.027 (6)0.027 (7)0.016 (7)0.010 (6)0.010 (6)0.001 (6)
C110.031 (6)0.007 (6)0.013 (6)0.000 (5)0.000 (5)0.001 (5)
C120.024 (6)0.024 (7)0.015 (7)0.009 (5)0.007 (5)0.003 (6)
Geometric parameters (Å, º) top
Bi1—O12.464 (10)N5—H50.88
Bi1—Cl12.543 (3)N6—C71.33 (2)
Bi1—Cl22.589 (4)N6—C61.372 (19)
Bi1—Cl32.601 (4)N6—H60.88
Bi1—Cl42.872 (4)N7—C61.34 (2)
Bi1—Cl52.921 (4)N7—H7A0.88
Bi2—Cl72.535 (3)N7—H7B0.88
Bi2—Cl82.606 (4)N8—C81.356 (18)
Bi2—Cl62.676 (4)N8—H8A0.88
Bi2—Cl92.725 (4)N8—H8B0.88
Bi2—Cl52.859 (4)N9—C111.312 (17)
Bi2—Cl42.928 (4)N9—C101.395 (17)
O1—C41.226 (18)N9—H90.88
O2—C81.237 (17)N10—C111.311 (16)
O3—C121.267 (18)N10—C91.403 (18)
O4—H4C0.82 (12)N10—H100.88
O4—H4D0.83 (12)N11—C101.340 (19)
N1—C31.33 (2)N11—H11A0.88
N1—C21.383 (18)N11—H11B0.88
N1—H10.88N12—C121.30 (2)
N2—C31.326 (19)N12—H12A0.88
N2—C11.375 (17)N12—H12B0.88
N2—H20.88C1—C21.371 (18)
N3—C21.328 (19)C1—C41.459 (18)
N3—H3A0.88C3—H30.95
N3—H3B0.88C5—C61.39 (2)
N4—C41.340 (18)C5—C81.482 (19)
N4—H4A0.88C7—H70.95
N4—H4B0.88C9—C101.34 (2)
N5—C71.31 (2)C9—C121.459 (19)
N5—C51.364 (18)C11—H110.95
O1—Bi1—Cl183.9 (3)C6—N7—H7B120.0
O1—Bi1—Cl292.6 (3)H7A—N7—H7B120.0
Cl1—Bi1—Cl294.34 (13)C8—N8—H8A120.0
O1—Bi1—Cl3174.9 (3)C8—N8—H8B120.0
Cl1—Bi1—Cl391.66 (12)H8A—N8—H8B120.0
Cl2—Bi1—Cl390.18 (12)C11—N9—C10108.9 (11)
O1—Bi1—Cl491.6 (3)C11—N9—H9125.5
Cl1—Bi1—Cl484.94 (12)C10—N9—H9125.5
Cl2—Bi1—Cl4175.67 (11)C11—N10—C9108.3 (11)
Cl3—Bi1—Cl485.58 (11)C11—N10—H10125.9
O1—Bi1—Cl589.9 (3)C9—N10—H10125.9
Cl1—Bi1—Cl5166.27 (13)C10—N11—H11A120.0
Cl2—Bi1—Cl598.13 (12)C10—N11—H11B120.0
Cl3—Bi1—Cl594.01 (12)H11A—N11—H11B120.0
Cl4—Bi1—Cl583.05 (11)C12—N12—H12A120.0
Cl7—Bi2—Cl893.94 (13)C12—N12—H12B120.0
Cl7—Bi2—Cl686.98 (12)H12A—N12—H12B120.0
Cl8—Bi2—Cl687.69 (12)C2—C1—N2106.6 (11)
Cl7—Bi2—Cl988.05 (12)C2—C1—C4125.7 (12)
Cl8—Bi2—Cl991.62 (12)N2—C1—C4127.6 (12)
Cl6—Bi2—Cl9174.93 (11)N3—C2—C1131.4 (13)
Cl7—Bi2—Cl590.85 (13)N3—C2—N1123.2 (12)
Cl8—Bi2—Cl5175.20 (11)C1—C2—N1105.4 (12)
Cl6—Bi2—Cl592.26 (12)N2—C3—N1106.9 (13)
Cl9—Bi2—Cl588.84 (13)N2—C3—H3126.6
Cl7—Bi2—Cl4173.86 (12)N1—C3—H3126.6
Cl8—Bi2—Cl492.07 (11)O1—C4—N4123.2 (13)
Cl6—Bi2—Cl494.49 (11)O1—C4—C1118.0 (12)
Cl9—Bi2—Cl490.55 (11)N4—C4—C1118.8 (13)
Cl5—Bi2—Cl483.14 (11)N5—C5—C6106.7 (12)
Bi1—Cl4—Bi296.60 (11)N5—C5—C8129.6 (13)
Bi2—Cl5—Bi197.04 (12)C6—C5—C8123.6 (13)
C4—O1—Bi1149.3 (9)N7—C6—N6123.7 (13)
H4C—O4—H4D108 (19)N7—C6—C5130.7 (14)
C3—N1—C2110.8 (12)N6—C6—C5105.5 (13)
C3—N1—H1124.6N5—C7—N6109.0 (16)
C2—N1—H1124.6N5—C7—H7125.5
C3—N2—C1110.4 (12)N6—C7—H7125.5
C3—N2—H2124.8O2—C8—N8124.5 (13)
C1—N2—H2124.8O2—C8—C5117.4 (12)
C2—N3—H3A120.0N8—C8—C5118.0 (13)
C2—N3—H3B120.0C10—C9—N10106.9 (12)
H3A—N3—H3B120.0C10—C9—C12127.4 (13)
C4—N4—H4A120.0N10—C9—C12125.8 (13)
C4—N4—H4B120.0N11—C10—C9130.9 (13)
H4A—N4—H4B120.0N11—C10—N9122.7 (13)
C7—N5—C5109.4 (14)C9—C10—N9106.4 (12)
C7—N5—H5125.3N10—C11—N9109.5 (12)
C5—N5—H5125.3N10—C11—H11125.3
C7—N6—C6109.3 (13)N9—C11—H11125.3
C7—N6—H6125.3O3—C12—N12121.6 (13)
C6—N6—H6125.3O3—C12—C9116.4 (13)
C6—N7—H7A120.0N12—C12—C9121.9 (13)
O1—Bi1—Cl4—Bi292.7 (3)C2—C1—C4—O15 (2)
Cl1—Bi1—Cl4—Bi2176.40 (12)N2—C1—C4—O1174.4 (13)
Cl3—Bi1—Cl4—Bi291.54 (12)C2—C1—C4—N4173.0 (13)
Cl5—Bi1—Cl4—Bi23.06 (9)N2—C1—C4—N47 (2)
Cl8—Bi2—Cl4—Bi1176.47 (11)C7—N5—C5—C61.8 (16)
Cl6—Bi2—Cl4—Bi188.62 (12)C7—N5—C5—C8178.5 (13)
Cl9—Bi2—Cl4—Bi191.89 (12)C7—N6—C6—N7178.3 (15)
Cl5—Bi2—Cl4—Bi13.12 (10)C7—N6—C6—C51.2 (15)
Cl7—Bi2—Cl5—Bi1178.20 (12)N5—C5—C6—N7177.7 (16)
Cl6—Bi2—Cl5—Bi191.18 (12)C8—C5—C6—N71 (2)
Cl9—Bi2—Cl5—Bi193.77 (12)N5—C5—C6—N61.8 (14)
Cl4—Bi2—Cl5—Bi13.07 (10)C8—C5—C6—N6178.7 (11)
O1—Bi1—Cl5—Bi294.8 (3)C5—N5—C7—N61.0 (17)
Cl1—Bi1—Cl5—Bi232.2 (6)C6—N6—C7—N50.2 (17)
Cl2—Bi1—Cl5—Bi2172.67 (11)N5—C5—C8—O2177.0 (13)
Cl3—Bi1—Cl5—Bi281.91 (13)C6—C5—C8—O20.9 (19)
Cl4—Bi1—Cl5—Bi23.13 (10)N5—C5—C8—N85 (2)
Cl1—Bi1—O1—C4170 (2)C6—C5—C8—N8178.5 (12)
Cl2—Bi1—O1—C475.7 (19)C11—N10—C9—C101.7 (15)
Cl4—Bi1—O1—C4105.4 (19)C11—N10—C9—C12178.5 (12)
Cl5—Bi1—O1—C422.4 (19)N10—C9—C10—N11176.9 (15)
C3—N2—C1—C20.2 (15)C12—C9—C10—N113 (2)
C3—N2—C1—C4179.9 (13)N10—C9—C10—N91.4 (14)
N2—C1—C2—N3179.8 (14)C12—C9—C10—N9178.8 (12)
C4—C1—C2—N31 (2)C11—N9—C10—N11177.8 (13)
N2—C1—C2—N10.8 (13)C11—N9—C10—C90.7 (14)
C4—C1—C2—N1179.5 (12)C9—N10—C11—N91.3 (15)
C3—N1—C2—N3179.8 (13)C10—N9—C11—N100.4 (15)
C3—N1—C2—C11.2 (15)C10—C9—C12—O32 (2)
C1—N2—C3—N10.5 (16)N10—C9—C12—O3178.1 (13)
C2—N1—C3—N21.0 (17)C10—C9—C12—N12175.8 (14)
Bi1—O1—C4—N422 (3)N10—C9—C12—N124 (2)
Bi1—O1—C4—C1160.0 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···Cl8i0.82 (12)2.44 (14)3.215 (11)158 (16)
O4—H4D···Cl10.83 (12)2.38 (13)3.190 (12)168 (17)
N1—H1···Cl6ii0.882.363.226 (12)169
N2—H2···Cl9iii0.882.303.166 (11)170
N3—H3A···O10.882.332.869 (17)120
N3—H3A···Cl10.882.823.649 (15)157
N3—H3B···Cl8iv0.882.713.451 (14)142
N5—H5···O4v0.881.872.725 (16)163
N6—H6···Cl3vi0.882.403.230 (12)158
N7—H7A···Cl5vi0.882.533.358 (16)156
N7—H7B···O20.882.242.802 (18)121
N8—H8A···O2v0.881.962.821 (15)166
N8—H8B···O4v0.882.042.905 (18)168
N9—H9···Cl20.882.633.348 (13)140
N10—H10···Cl4vii0.882.373.249 (12)175
N11—H11A···O30.882.302.850 (18)120
N11—H11A···Cl5vi0.882.833.426 (14)127
N11—H11B···Cl20.882.703.447 (15)143
N12—H12A···Cl9viii0.882.453.315 (13)168
N12—H12B···Cl4vii0.882.653.529 (15)177
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2; (v) x+1, y+1, z+2; (vi) x+2, y+1, z+1; (vii) x+2, y, z+1; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula(C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2O
Mr1136.43
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)11.3365 (5), 12.2486 (6), 12.7919 (6)
α, β, γ (°)74.433 (3), 65.939 (3), 75.397 (3)
V3)1541.71 (12)
Z2
Radiation typeMo Kα
µ (mm1)12.22
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.150, 0.194
No. of measured, independent and
observed [I > 2σ(I)] reflections
18217, 5695, 4988
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.223, 1.10
No. of reflections5695
No. of parameters359
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.1568P)2 + 11.6845P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)5.85, 4.41

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Bi1—O12.464 (10)Bi2—Cl72.535 (3)
Bi1—Cl12.543 (3)Bi2—Cl82.606 (4)
Bi1—Cl22.589 (4)Bi2—Cl62.676 (4)
Bi1—Cl32.601 (4)Bi2—Cl92.725 (4)
Bi1—Cl42.872 (4)Bi2—Cl52.859 (4)
Bi1—Cl52.921 (4)Bi2—Cl42.928 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···Cl8i0.82 (12)2.44 (14)3.215 (11)158 (16)
O4—H4D···Cl10.83 (12)2.38 (13)3.190 (12)168 (17)
N1—H1···Cl6ii0.882.363.226 (12)169
N2—H2···Cl9iii0.882.303.166 (11)170
N3—H3A···O10.882.332.869 (17)120
N3—H3A···Cl10.882.823.649 (15)157
N3—H3B···Cl8iv0.882.713.451 (14)142
N5—H5···O4v0.881.872.725 (16)163
N6—H6···Cl3vi0.882.403.230 (12)158
N7—H7A···Cl5vi0.882.533.358 (16)156
N7—H7B···O20.882.242.802 (18)121
N8—H8A···O2v0.881.962.821 (15)166
N8—H8B···O4v0.882.042.905 (18)168
N9—H9···Cl20.882.633.348 (13)140
N10—H10···Cl4vii0.882.373.249 (12)175
N11—H11A···O30.882.302.850 (18)120
N11—H11A···Cl5vi0.882.833.426 (14)127
N11—H11B···Cl20.882.703.447 (15)143
N12—H12A···Cl9viii0.882.453.315 (13)168
N12—H12B···Cl4vii0.882.653.529 (15)177
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2; (v) x+1, y+1, z+2; (vi) x+2, y+1, z+1; (vii) x+2, y, z+1; (viii) x, y, z1.
 

Acknowledgements

The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719–m1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoforth, A. M., Smith, M. D., Peterson, L. Jr & Zur Loye, H.-C. (2004). Inorg. Chem. 43, 7042–7049.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKyriakidis, C. E., Christidis, P. C., Rentzeperis, P. J., Tossidis, I. A. & Bolos, C. A. (1990). Z. Kristallogr. 193, 101–110.  CrossRef CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurel, I., Golic, L., Bukovec, P. & Gubina, M. (1998). Inorg. Biochem. 71, 53–60.  Web of Science CrossRef CAS Google Scholar
First citationWu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506–m1508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m643-m644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds